Solveeit Logo

Question

Question: If the vectors \[\overrightarrow {\text{k}} \] and \[\overrightarrow {\text{A}} \] are parallel to e...

If the vectors k\overrightarrow {\text{k}} and A\overrightarrow {\text{A}} are parallel to each other ,then what is kk×A{\text{k}}\overrightarrow {\text{k}} \times \overrightarrow {\text{A}} equal to?
A) k2A{k^2}\overrightarrow A
B) 0\overrightarrow 0
C) k2A- {k^2}\overrightarrow A
D) A\overrightarrow A

Explanation

Solution

Hint: Here since the vectors k\overrightarrow {\text{k}} and A\overrightarrow {\text{A}} are parallel to each other therefore the angle between them is . Hence apply the formula for X×Y|\overrightarrow X \times \overrightarrow {Y|} to get the answer.
Formula of magnitude is given by:
X×Y=|X| |Y|sinθ|\overrightarrow {\text{X}} \times \overrightarrow {{\text{Y}}|} = {\text{|}}\overrightarrow {\text{X}} {\text{| |}}\overrightarrow {{\text{Y|}}} \sin \theta

Complete step by step solution:
We are given two vectors k\overrightarrow {\text{k}} and A\overrightarrow {\text{A}} such that they are parallel to each other.
Hence the angle between these two vectors is 0{0^ \circ }.
According to the following formula of vector product of two vectors:
X×Y=|X| |Y|sinθ|\overrightarrow {\text{X}} \times \overrightarrow {{\text{Y}}|} = {\text{|}}\overrightarrow {\text{X}} {\text{| |}}\overrightarrow {{\text{Y|}}} \sin \theta
Applying this formula for given vectors we get:
|k×A=|k|A|sin0\overrightarrow {{\text{|k}}} \times \overrightarrow {\text{A}} | = \overrightarrow {{\text{|k}}} |\overrightarrow {{\text{|A|}}} \sin {0^ \circ }
Since , sin0=0\sin {0^ \circ } = 0
Therefore , |k×A=0\overrightarrow {{\text{|k}}} \times \overrightarrow {\text{A}} | = 0
Hence,

kk×A=k(0) kk×A=0  {\text{k}}\overrightarrow {\text{k}} \times \overrightarrow {\text{A}} = {\text{k}}\left( 0 \right) \\\ {\text{k}}\overrightarrow {\text{k}} \times \overrightarrow {\text{A}} = \overrightarrow 0 \\\

Therefore option B is the correct answer.

Note:
This question can be directly solved in one step as the vector product of all the vectors which are parallel to each other is zero.
Therefore,

kk×A=k(0) kk×A=0  {\text{k}}\overrightarrow {\text{k}} \times \overrightarrow {\text{A}} = {\text{k}}\left( 0 \right) \\\ {\text{k}}\overrightarrow {\text{k}} \times \overrightarrow {\text{A}} = \overrightarrow 0 \\\