Solveeit Logo

Question

Question: If the vectors \(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\) are three mutually perpe...

If the vectors a,b,c\overrightarrow{a},\overrightarrow{b},\overrightarrow{c} are three mutually perpendicular vectors of equal magnitude, prove that (a+b+c)\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right) is equally inclined with vectors a,b,c\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}.

Explanation

Solution

We first assume the magnitude of the three vectors a,b,c\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}. They are three mutually perpendicular vectors of equal magnitude. We, based on the given condition find the mathematical form of a.b=b.c=c.a=0\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{a}=0. Then we find the magnitude of the vector form (a+b+c)\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right). We also assume the angle between them. We find the angles and prove the requirement.

Complete step by step solution:
It’s given that a,b,c\overrightarrow{a},\overrightarrow{b},\overrightarrow{c} are three mutually perpendicular vectors of equal magnitude.
We assume that a=b=c=λ\left| \overrightarrow{a} \right|=\left| \overrightarrow{b} \right|=\left| \overrightarrow{c} \right|=\lambda .
Since the vectors are mutually perpendicular, we can say a.b=b.c=c.a=0\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{a}=0.
We have to show that (a+b+c)\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right) is equally inclined with vectors a,b,c\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}.
We take the magnitude of (a+b+c)\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right).
So, a+b+c2=a.a+b.b+c.c+2a.b+2b.c+2c.a{{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}^{2}}=\overrightarrow{a}.\overrightarrow{a}+\overrightarrow{b}.\overrightarrow{b}+\overrightarrow{c}.\overrightarrow{c}+2\overrightarrow{a}.\overrightarrow{b}+2\overrightarrow{b}.\overrightarrow{c}+2\overrightarrow{c}.\overrightarrow{a}.
We put the values to get
a+b+c2 =a.a+b.b+c.c+2a.b+2b.c+2c.a =λ2+λ2+λ2+0 =3λ2 \begin{aligned} & {{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}^{2}} \\\ & =\overrightarrow{a}.\overrightarrow{a}+\overrightarrow{b}.\overrightarrow{b}+\overrightarrow{c}.\overrightarrow{c}+2\overrightarrow{a}.\overrightarrow{b}+2\overrightarrow{b}.\overrightarrow{c}+2\overrightarrow{c}.\overrightarrow{a} \\\ & ={{\lambda }^{2}}+{{\lambda }^{2}}+{{\lambda }^{2}}+0 \\\ & =3{{\lambda }^{2}} \\\ \end{aligned}
Taking square root, we get a+b+c=3λ\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|=\sqrt{3}\lambda .
Now we assume the angle these vectors a,b,c\overrightarrow{a},\overrightarrow{b},\overrightarrow{c} make with (a+b+c)\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right) are θ1,θ2,θ3{{\theta }_{1}},{{\theta }_{2}},{{\theta }_{3}} respectively.
Therefore, cosθ1=a(a+b+c)aa+b+c=a.a+a.b+acaa+b+c=a2aa+b+c=aa+b+c\cos {{\theta }_{1}}=\dfrac{\overrightarrow{a}\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)}{\left| \overrightarrow{a} \right|\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{\overrightarrow{a}.\overrightarrow{a}+\overrightarrow{a}.\overrightarrow{b}+\overrightarrow{a}\overrightarrow{c}}{\left| \overrightarrow{a} \right|\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{{{\left| \overrightarrow{a} \right|}^{2}}}{\left| \overrightarrow{a} \right|\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{\left| \overrightarrow{a} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}.
Putting the values, we get cosθ1=aa+b+c=λ3λ=13\cos {{\theta }_{1}}=\dfrac{\left| \overrightarrow{a} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{\lambda }{\sqrt{3}\lambda }=\dfrac{1}{\sqrt{3}}.
This gives θ1=cos1(13){{\theta }_{1}}={{\cos }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right).
similarly, cosθ2=b(a+b+c)ba+b+c=b.a+b.b+bcba+b+c=b2ba+b+c=ba+b+c\cos {{\theta }_{2}}=\dfrac{\overrightarrow{b}\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)}{\left| \overrightarrow{b} \right|\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{\overrightarrow{b}.\overrightarrow{a}+\overrightarrow{b}.\overrightarrow{b}+\overrightarrow{b}\overrightarrow{c}}{\left| \overrightarrow{b} \right|\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{{{\left| \overrightarrow{b} \right|}^{2}}}{\left| \overrightarrow{b} \right|\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{\left| \overrightarrow{b} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}.
Putting the values, we get cosθ2=ba+b+c=λ3λ=13\cos {{\theta }_{2}}=\dfrac{\left| \overrightarrow{b} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{\lambda }{\sqrt{3}\lambda }=\dfrac{1}{\sqrt{3}}.
This gives θ2=cos1(13){{\theta }_{2}}={{\cos }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right).
Therefore, cosθ3=c(a+b+c)ca+b+c=c.a+c.b+ccca+b+c=c2ca+b+c=ca+b+c\cos {{\theta }_{3}}=\dfrac{\overrightarrow{c}\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right)}{\left| \overrightarrow{c} \right|\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{\overrightarrow{c}.\overrightarrow{a}+\overrightarrow{c}.\overrightarrow{b}+\overrightarrow{c}\overrightarrow{c}}{\left| \overrightarrow{c} \right|\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{{{\left| \overrightarrow{c} \right|}^{2}}}{\left| \overrightarrow{c} \right|\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{\left| \overrightarrow{c} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}.
Putting the values, we get cosθ3=ca+b+c=λ3λ=13\cos {{\theta }_{3}}=\dfrac{\left| \overrightarrow{c} \right|}{\left| \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right|}=\dfrac{\lambda }{\sqrt{3}\lambda }=\dfrac{1}{\sqrt{3}}.
This gives θ3=cos1(13){{\theta }_{3}}={{\cos }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right).
Therefore, θ1=θ2=θ3=cos1(13){{\theta }_{1}}={{\theta }_{2}}={{\theta }_{3}}={{\cos }^{-1}}\left( \dfrac{1}{\sqrt{3}} \right). Hence, (a+b+c)\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right) is equally inclined with vectors a,b,c\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}.

Note: We need not to find the exact angle for the vector (a+b+c)\left( \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c} \right). The equality of the angles is enough to find the proof. As the three vectors are perpendicular, we can say a.b=b.c=c.a=0=b.a=c.b=a.c\overrightarrow{a}.\overrightarrow{b}=\overrightarrow{b}.\overrightarrow{c}=\overrightarrow{c}.\overrightarrow{a}=0=\overrightarrow{b}.\overrightarrow{a}=\overrightarrow{c}.\overrightarrow{b}=\overrightarrow{a}.\overrightarrow{c}.