Solveeit Logo

Question

Question: If the vectors \(\overrightarrow a = i - j + 2k,{\text{ }}\overrightarrow b = 2i + 4j + k,{\text{ }}...

If the vectors a=ij+2k, b=2i+4j+k, c=λi+j+μk\overrightarrow a = i - j + 2k,{\text{ }}\overrightarrow b = 2i + 4j + k,{\text{ }}\overrightarrow c = \lambda i + j + \mu k are mutually orthogonal, then (λ,μ)=\left( {\lambda ,\mu } \right) =
A) (2,3)\left( {2, - 3} \right)
B) (2,3)\left( { - 2,3} \right)
C) (3,2)\left( {3, - 2} \right)
D) (3,2)\left( { - 3,2} \right)

Explanation

Solution

As we are given a, b, c\overrightarrow a ,{\text{ }}\overrightarrow b ,{\text{ }}\overrightarrow c are mutually perpendicular, so , if the two vectors are perpendicular, then, c.b=0 and a.c=0\overrightarrow c .\overrightarrow b = 0{\text{ and }}\overrightarrow a. \overrightarrow c = 0. Both dot products will be zero.

Complete step-by-step answer:
Three vectors are given, a, b, c\overrightarrow a ,{\text{ }}\overrightarrow b ,{\text{ }}\overrightarrow c and it is said that all three are mutually perpendicular. That means the vectors are perpendicular to each other, that is, ab, bc, ac\overrightarrow a \bot \overrightarrow b ,{\text{ }}\overrightarrow b \bot \overrightarrow c ,{\text{ }}\overrightarrow a \bot \overrightarrow c . \bot is the sign of perpendicular.
Now we are provided that
a=ij+2k  b=2i+4j+k c=λi+j+μk  \overrightarrow a = i - j + 2k \\\ {\text{ }}\overrightarrow b = 2i + 4j + k \\\ \overrightarrow c = \lambda i + j + \mu k \\\
As they are mutually perpendicular, so their dot product is zero.
So, c.b=0 and a.c=0\overrightarrow c .\overrightarrow b = 0{\text{ and }}\overrightarrow a .\overrightarrow c = 0.
Now first let's do b.c=0\overrightarrow b .\overrightarrow c = 0
(2i+4j+k).(λi+j+μk)=0 2λ+4+μ=0  \left( {2i + 4j + k} \right).\left( {\lambda i + j + \mu k} \right) = 0 \\\ 2\lambda + 4 + \mu = 0 \\\
2λ+μ=42\lambda + \mu = - 4 (1)
Now upon solving a.c=0\overrightarrow a .\overrightarrow c = 0
(ij+2k).(λi+j+μk)=0 λ1+2μ=0  \left( {i - j + 2k} \right).\left( {\lambda i + j + \mu k} \right) = 0 \\\ \lambda - 1 + 2\mu = 0 \\\
λ+2μ=1\lambda + 2\mu = 1 (2)
Now from equation (1), we get
μ=2λ4\mu = - 2\lambda - 4
Putting this value in equation (2)
λ+2(2λ4)=1 λ4λ8=1 \-3λ=9 λ=3 And μ=2λ4 =2×(3)4 μ=2  \lambda + 2\left( { - 2\lambda - 4} \right) = 1 \\\ \lambda - 4\lambda - 8 = 1 \\\ \- 3\lambda = 9 \\\ \lambda = - 3 \\\ {\text{And}} \\\ \mu = - 2\lambda - 4 \\\ = - 2 \times \left( { - 3} \right) - 4 \\\ \mu = 2 \\\
So we get (λ,μ)=(3,2)\left( {\lambda ,\mu } \right) = \left( { - 3,2} \right)

Hence option D is correct.

Note: We know when a and b\overrightarrow a {\text{ and }}\overrightarrow b are perpendicular, then a.b=0\overrightarrow a. \overrightarrow b = 0. Or when a and b\overrightarrow a {\text{ and }}\overrightarrow b are parallel, then a×b=0\overrightarrow a \times \overrightarrow b = 0. As we know, a.b=abcosθ\overrightarrow a .\overrightarrow b = ab\cos \theta and if they are perpendicular, then the angle between them or θ=90\theta = {90^ \circ }. So, abcos90=0ab\cos {90^ \circ } = 0. Similarly, we know that a×b=absinθ\overrightarrow a \times \overrightarrow b = ab\sin \theta . It is zero when the angle between them is 00. So they are parallel.