Solveeit Logo

Question

Mathematics Question on Vector Algebra

If the vectors a=2i^+j^+4k^,b=4i^2j^+3k^\overrightarrow{a}=2\hat{i}+\hat{j}+4\hat{k},\overrightarrow{b}=4\hat{i}-2\hat{j}+3\hat{k} and c=2i^3j^λk^\overrightarrow{c}=2\hat{i}-3\hat{j}-\lambda \hat{k} are coplanar, then the value of λ\lambda is equal to

A

2

B

1

C

3

D

1-1

Answer

1

Explanation

Solution

The correct option is(B): 1

\because a=2i^+j^+4k^,b=4i^2j^+3k^\overrightarrow{a}=2\hat{i}+\hat{j}+4\hat{k},\overrightarrow{b}=4\hat{i}-2\hat{j}+3\hat{k} and c=2i^3j^λk^\overrightarrow{c}=2\hat{i}-3\hat{j}-\lambda \hat{k} are coplaner.
Hence, 214 423 23λ =0\left| \begin{matrix} 2 & 1 & 4 \\\ 4 & -2 & 3 \\\ 2 & -3 & -\lambda \\\ \end{matrix} \right|=0
\Rightarrow 2(2λ+9)1(4λ6)+(12+4)=02(2\lambda +9)-1(-4\lambda -6)+(-12+4)=0
\Rightarrow 4λ+18+4λ+648+16=04\lambda +18+4\lambda +6-48+16=0
\Rightarrow 8λ8=08\lambda -8=0
\Rightarrow λ=1\lambda =1