Solveeit Logo

Question

Question: If the vectors \(\mathbf{a},\mathbf{b}\) and **c** are represented by the sides \(BC,CA\) and \(AB\)...

If the vectors a,b\mathbf{a},\mathbf{b} and c are represented by the sides BC,CABC,CA and ABAB respectively of the ΔABC\Delta ABC, then

A

a.b+b.c+c.a=0\mathbf{a}.\mathbf{b} + \mathbf{b}.\mathbf{c} + \mathbf{c}.\mathbf{a} = 0

B

a×b=b×c=c×a\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{c} \times \mathbf{a}

C

a.b=b.c=c.a\mathbf{a}.\mathbf{b} = \mathbf{b}.\mathbf{c} = \mathbf{c}.\mathbf{a}

D

a×b=b×c=c×a=0\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{c} \times \mathbf{a} = 0

Answer

a×b=b×c=c×a\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} = \mathbf{c} \times \mathbf{a}

Explanation

Solution

Here a+b+c=0a + b + c = 0. Take cross products with a and b by turn.