Solveeit Logo

Question

Question: If the vectors <img src="https://cdn.pureessence.tech/canvas_394.png?top_left_x=866&top_left_y=0&wid...

If the vectors = (tanα,1,2tanα2)\left( \tan \alpha , - 1,2 \sqrt { \tan \frac { \alpha } { 2 } } \right),

= (tanα,tanα,3sinα2)\left( \tan \alpha , \tan \alpha , \frac { - 3 } { \sqrt { \sin \frac { \alpha } { 2 } } } \right) are orthogonal and vector

= (1, 3, sin 2a) makes an obtuse angle with z- axis then a equals:

A

(2n +1)p + tan–1 2

B

(2n + 1)p– tan–12

C

np – tan–1 2

D

None of these

Answer

(2n + 1)p– tan–12

Explanation

Solution

b\overrightarrow { \mathrm { b } } perpendicular c\overrightarrow { \mathrm { c } } ̃ b\overrightarrow { \mathrm { b } } . c\overrightarrow { \mathrm { c } } = 0

̃ tan2 a – tan a – 6 = 0 ̃ tan a = 3, –2 also make an obtuse angle with z- axis therefore . < 0 ̃ sin 2a < 0

if tan a = 3 then sin 2a = 2tanα1+tan2α\frac { 2 \tan \alpha } { 1 + \tan ^ { 2 } \alpha }= 43\frac { 4 } { 3 }> 0 Now tan 2a > 0, sin 2a < 0 ̃ a Î third quadrant and tan a = –2

̃ tan (p – a) = 2 ̃ a = (2n +1) p – tan–1 2, n Î I