Question
Question: If the vectors \(6\mathbf{i} - 2\mathbf{j} + 3\mathbf{k},2\mathbf{i} + 3\mathbf{j} - 6\mathbf{k}\) a...
If the vectors 6i−2j+3k,2i+3j−6k and 3i+6j−2k form a triangle, then it is
A
Right angled
B
Obtuse angled
C
Equilteral
D
Isosceles
Answer
Obtuse angled
Explanation
Solution
AB→= Position vector of B→– Position vector of A→
=(2i+3j−6k)−(6i−2j+3k)=−4i+5j−9k
⇒ ∣AB→∣=16+25+81=122, BC→=i+3j+4k
⇒∣BC→∣=1+9+16=26 and AC→=−3i+8j−5k
⇒ ∣AC→∣=98
Therefore, AB2=122, BC2=26 and AC2=98.
⇒AB2+BC2=26+122=148
Since AC2<AB2+BC2, therefore ΔABC is an obtuse-angled triangle.