Solveeit Logo

Question

Question: If the vectors \(6\mathbf{i} - 2\mathbf{j} + 3\mathbf{k},2\mathbf{i} + 3\mathbf{j} - 6\mathbf{k}\) a...

If the vectors 6i2j+3k,2i+3j6k6\mathbf{i} - 2\mathbf{j} + 3\mathbf{k},2\mathbf{i} + 3\mathbf{j} - 6\mathbf{k} and 3i+6j2k3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k} form a triangle, then it is

A

Right angled

B

Obtuse angled

C

Equilteral

D

Isosceles

Answer

Obtuse angled

Explanation

Solution

AB\overset{\rightarrow}{AB}= Position vector of B\overset{\rightarrow}{B}– Position vector of A\overset{\rightarrow}{A}

=(2i+3j6k)(6i2j+3k)=4i+5j9k= (2\mathbf{i} + 3\mathbf{j} - 6\mathbf{k}) - (6\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}) = - 4\mathbf{i} + 5\mathbf{j} - 9\mathbf{k}

AB=16+25+81=122|\overset{\rightarrow}{AB}| = \sqrt{16 + 25 + 81} = \sqrt{122}, BC=i+3j+4k\overset{\rightarrow}{BC} = \mathbf{i} + 3\mathbf{j} + 4\mathbf{k}

BC=1+9+16=26|\overset{\rightarrow}{BC}| = \sqrt{1 + 9 + 16} = \sqrt{26} and AC=3i+8j5k\overset{\rightarrow}{AC} = - 3\mathbf{i} + 8\mathbf{j} - 5\mathbf{k}

AC=98|\overset{\rightarrow}{AC}| = \sqrt{98}

Therefore, AB2=122AB^{2} = 122, BC2=26BC^{2} = 26 and AC2=98AC^{2} = 98.

AB2+BC2=26+122=148\Rightarrow AB^{2} + BC^{2} = 26 + 122 = 148

Since AC2<AB2+BC2AC^{2} < AB^{2} + BC^{2}, therefore ΔABC\Delta ABC is an obtuse-angled triangle.