Solveeit Logo

Question

Question: If the vectors \(4i+7j+8k\), \(2i+7j+7k\) and \(3i+5j+7k\) are the position vectors of the vertices ...

If the vectors 4i+7j+8k4i+7j+8k, 2i+7j+7k2i+7j+7k and 3i+5j+7k3i+5j+7k are the position vectors of the vertices AA , BB and CC respectively of triangle ABCABC . The position vector of the point where the bisector of angle AA meets BCBC .
(A) 3.6i+5.4j+7.2k3.6i+5.4j+7.2k
(B) 2.477i+6.044j+7k2.477i+6.044j+7k
(C) 2i+7j+8k2i+7j+8k
(D) None of these

Explanation

Solution

Here in this question we have been asked to find the position vector of the point where the bisector of angle AA meets BCBC . When the position vectors of the vertices AA , BB and CC of triangle are given as 4i+7j+8k4i+7j+8k, 2i+7j+7k2i+7j+7kand 3i+5j+7k3i+5j+7k respectively.

Complete step-by-step solution:
Now considering from the question we have been given that the position vectors of the vertices AA , BB and CC of the triangle ABCABC are given as 4i+7j+8k4i+7j+8k, 2i+7j+7k2i+7j+7k and 3i+5j+7k3i+5j+7k respectively.
The expressions representing the line ABAB will be (2i+7j+7k)(4i+7j+8k)=2ik\Rightarrow \left( 2i+7j+7k \right)-\left( 4i+7j+8k \right)=-2i-k .
The length of ABAB will be given as AB=12+225\left| AB \right|=\sqrt{{{1}^{2}}+{{2}^{2}}}\Rightarrow \sqrt{5} .
The expressions representing the line ACAC will be (3i+5j+7k)(4i+7j+8k)=i2jk\Rightarrow \left( 3i+5j+7k \right)-\left( 4i+7j+8k \right)=-i-2j-k .
The length of ACAC will be given as AC=12+22+126\left| AC \right|=\sqrt{{{1}^{2}}+{{2}^{2}}+{{1}^{2}}}\Rightarrow \sqrt{6} .
The expressions representing the line BCBC will be (3i+5j+7k)(2i+7j+7k)=i2j\Rightarrow \left( 3i+5j+7k \right)-\left( 2i+7j+7k \right)=i-2j .
From the basic concepts of triangles, we know that the formula for finding DD the position vector of the point where the bisector of angle AA meets BCBC is given as AB(C)+AC(B)AB+AC\dfrac{\left| AB \right|\left( C \right)+\left| AC \right|\left( B \right)}{\left| AB \right|+\left| AC \right|} which is a section formula for vectors, where B,CB,C the position vectors of B,CB,C respectively. Now by applying the formula we will have
5(3i+5j+7k)+6(2i+7j+7k)5+6 35i+26i+55j+76j+75k+76k5+6 (35+265+6)i+(55+765+6)j+(75+765+6)k (2+55+6)i+(5+265+6)j+7k 2.477i+6.044j+7k \begin{aligned} & \Rightarrow \dfrac{\sqrt{5}\left( 3i+5j+7k \right)+\sqrt{6}\left( 2i+7j+7k \right)}{\sqrt{5}+\sqrt{6}} \\\ & \Rightarrow \dfrac{3\sqrt{5}i+2\sqrt{6}i+5\sqrt{5}j+7\sqrt{6}j+7\sqrt{5}k+7\sqrt{6}k}{\sqrt{5}+\sqrt{6}} \\\ & \Rightarrow \left( \dfrac{3\sqrt{5}+2\sqrt{6}}{\sqrt{5}+\sqrt{6}} \right)i+\left( \dfrac{5\sqrt{5}+7\sqrt{6}}{\sqrt{5}+\sqrt{6}} \right)j+\left( \dfrac{7\sqrt{5}+7\sqrt{6}}{\sqrt{5}+\sqrt{6}} \right)k \\\ & \Rightarrow \left( 2+\dfrac{\sqrt{5}}{\sqrt{5}+\sqrt{6}} \right)i+\left( 5+\dfrac{2\sqrt{6}}{\sqrt{5}+\sqrt{6}} \right)j+7k \\\ & \Rightarrow 2.477i+6.044j+7k \\\ \end{aligned}

Therefore we can conclude that the position vector of the point where the bisector of angle AA meets BCBC is given as 2.477i+6.044j+7k2.477i+6.044j+7k . Therefore we will mark the option “B” as correct.

Note: While answering questions of this type we should be sure with our concepts that we are going to apply during the process. If we have forgot and assumed the section formula to be AB(B)+AC(C)AB+AC\dfrac{\left| AB \right|\left( B \right)+\left| AC \right|\left( C \right)}{\left| AB \right|+\left| AC \right|} ,then the result will be wrong.