Solveeit Logo

Question

Question: If the vectors \(4i + 11j + mk,7i + 2j + 6k\) and \(i + 5j + 4k\) are coplanar, then m is...

If the vectors 4i+11j+mk,7i+2j+6k4i + 11j + mk,7i + 2j + 6k and i+5j+4ki + 5j + 4k are coplanar, then m is

A

38

B

0

C

10

D

– 10

Answer

10

Explanation

Solution

\because The vectors 4i+11j+mk,7i+2j+6k4\mathbf{i} + 11\mathbf{j} + m\mathbf{k},7\mathbf{i} + 2\mathbf{j} + 6\mathbf{k} and i+5j+4k\mathbf{i} + 5\mathbf{j} + 4\mathbf{k} are coplanar.

4 & 11 & m \\ 7 & 2 & 6 \\ 1 & 5 & 4 \end{matrix} \right| = 0$$ $$\Rightarrow 4(8 - 30) - 11(28 - 6) + m(35 - 2) = 0$$ $\Rightarrow - 88 - 11 \times 22 + 33m = 0 \Rightarrow - 8 - 22 + 3m = 0$ $\Rightarrow 3m = 30$ $\Rightarrow m = 10.$