Solveeit Logo

Question

Question: If the vector \(\mathbf{i} + \mathbf{j} + \mathbf{k}\) makes angles \(\alpha,\beta,\gamma\)with vect...

If the vector i+j+k\mathbf{i} + \mathbf{j} + \mathbf{k} makes angles α,β,γ\alpha,\beta,\gammawith vectors i,j,k\mathbf{i},\mathbf{j},\mathbf{k}respectively, then

A

α=βγ\alpha = \beta \neq \gamma

B

α=γβ\alpha = \gamma \neq \beta

C

β=γα\beta = \gamma \neq \alpha

D

α=β=γ\alpha = \beta = \gamma

Answer

α=β=γ\alpha = \beta = \gamma

Explanation

Solution

Angle between i+j+k\mathbf{i} + \mathbf{j} + \mathbf{k} and i\mathbf{i} is equal to

cos1{(i+j+k).ii+j+ki}α=cos1(13)\cos^{- 1}\left\{ \frac{(\mathbf{i} + \mathbf{j} + \mathbf{k}).\mathbf{i}}{|\mathbf{i} + \mathbf{j} + \mathbf{k}||\mathbf{i}|} \right\} \Rightarrow \alpha = \cos^{- 1}\left( \frac{1}{\sqrt{3}} \right)

Similarly angle between i+j+k\mathbf{i} + \mathbf{j} + \mathbf{k} and j\mathbf{j} is β=cos1(13)\beta = \cos^{- 1}\left( \frac{1}{\sqrt{3}} \right)

and between i+j+k\mathbf{i} + \mathbf{j} + \mathbf{k} and k\mathbf{k}is γ=cos1(13).\gamma = \cos^{- 1}\left( \frac{1}{\sqrt{3}} \right).

Hence α=β=γ.\alpha = \beta = \gamma.