Solveeit Logo

Question

Question: If the vector \[6{\text{i - 3j - 6k}}\] is decomposed into vectors parallel and perpendicular to the...

If the vector 6i - 3j - 6k6{\text{i - 3j - 6k}} is decomposed into vectors parallel and perpendicular to the vector i + j + k{\text{i + j + k}} then find the vectors.
A) (i + j + k) - \left( {{\text{i + j + k}}} \right)& 7i - 2j - 5k{\text{7i - 2j - 5k}}
B)2(i + j + k) - 2\left( {{\text{i + j + k}}} \right) & i - j - 4k{\text{i - j - 4k}}
C)2(i + j + k)2\left( {{\text{i + j + k}}} \right) & 4i - 5j - 8k{\text{4i - 5j - 8k}}
D) 3(i + j + k)3\left( {{\text{i + j + k}}} \right) & i - j + k{\text{i - j + k}}

Explanation

Solution

A vector is decomposed into two vectors (say ‘x’ and ‘y’) which are parallel and perpendicular to the vector i + j + k{\text{i + j + k}}. We can write x=m(i + j + k)\left( {{\text{i + j + k}}} \right) where m is a scalar quantity as c is parallel toi + j + k{\text{i + j + k}}. And y is perpendicular to it so their dot product will be zero. Assume d to be a1i + a2j + a3k{{\text{a}}_1}{\text{i + }}{{\text{a}}_2}{\text{j + }}{{\text{a}}_3}{\text{k}} where a1+a2+a3=0{{\text{a}}_1} + {{\text{a}}_2} + {{\text{a}}_3} = 0 . Now add the value of ‘x’ and ‘y’ and equate it to a given vector (6i - 3j - 6k6{\text{i - 3j - 6k}}). Solve and find the vectors.

Complete step-by-step answer:
The given vector is=6i - 3j - 6k6{\text{i - 3j - 6k}} which is decomposed into two vectors such that they are parallel and perpendicular to the vectori + j + k{\text{i + j + k}}. Let us assume the two vectors to be x and y . Then we can write- 6i - 3j - 6k6{\text{i - 3j - 6k}}=x + y --- (i)

Here given that x is parallel to i + j + k{\text{i + j + k}} so x= m(i + j + k)\left( {{\text{i + j + k}}} \right) where m is scalar.
Also given, y is perpendicular to i + j + k{\text{i + j + k}} so their dot product will be zero. Assume y=a1i + a2j + a3k{{\text{a}}_1}{\text{i + }}{{\text{a}}_2}{\text{j + }}{{\text{a}}_3}{\text{k}} wherea1+a2+a3=0{{\text{a}}_1} + {{\text{a}}_2} + {{\text{a}}_3} = 0. Now we put the values of x and y in eq. (i).
6i - 3j - 6k = m(i + j + k)+a1i + a2j + a3k\Rightarrow 6{\text{i - 3j - 6k = m}}\left( {{\text{i + j + k}}} \right) + {{\text{a}}_1}{\text{i + }}{{\text{a}}_2}{\text{j + }}{{\text{a}}_3}{\text{k}}
On multiplying m with the vectors and separating the common vectors we get,

6i - 3j - 6k = mi + mj + mk+a1i + a2j + a3k 6i - 3j - 6k = mi+a1i + mj+a2j + mk+a3k  \Rightarrow 6{\text{i - 3j - 6k = mi + mj + mk}} + {{\text{a}}_1}{\text{i + }}{{\text{a}}_2}{\text{j + }}{{\text{a}}_3}{\text{k}} \\\ \Rightarrow 6{\text{i - 3j - 6k = mi}} + {{\text{a}}_1}{\text{i + mj}} + {{\text{a}}_2}{\text{j + mk}} + {{\text{a}}_3}{\text{k}} \\\

Now taking i, j and k common, we get-
6i - 3j - 6k = (m+a1)i + (m + a2)j + (m + a3)k\Rightarrow 6{\text{i - 3j - 6k = }}\left( {{\text{m}} + {{\text{a}}_1}} \right){\text{i + }}\left( {{\text{m + }}{{\text{a}}_2}} \right){\text{j + }}\left( {{\text{m + }}{{\text{a}}_3}} \right){\text{k}}
On comparing the coefficient of i, j and k, we get
6=m+a1 3=m+a2 6=m+a3   \Rightarrow 6 = {\text{m}} + {{\text{a}}_1} \\\ \Rightarrow - 3 = {\text{m}} + {{\text{a}}_2} \\\ \Rightarrow - 6 = {\text{m}} + {{\text{a}}_3} \\\ \\\
On adding the three values we get,
3m + a1+a2+a3=636=3\Rightarrow 3{\text{m + }}{{\text{a}}_1} + {{\text{a}}_2} + {{\text{a}}_3} = 6 - 3 - 6 = - 3
We also know that a1+a2+a3=0{{\text{a}}_1} + {{\text{a}}_2} + {{\text{a}}_3} = 0. So putting this value, we get the value of m,
3m=3m=1\Rightarrow 3{\text{m}} = - 3 \Rightarrow {\text{m}} = - 1
Now we know the value of m so we can find the value of a1,a2{{\text{a}}_1},{{\text{a}}_2} and a3{{\text{a}}_3} ,
a1=6+1=5 a2=3+1=2 a3=6+1=5  \Rightarrow {{\text{a}}_1} = 6 + 1 = 5 \\\ \Rightarrow {{\text{a}}_2} = - 3 + 1 = - 2 \\\ \Rightarrow {{\text{a}}_3} = - 6 + 1 = - 5 \\\
So putting these values in eq. (i) we get-
6i - 3j - 6k=1(i + j + k)+(7i - 2j - 5k)\Rightarrow 6{\text{i - 3j - 6k}} = - 1\left( {{\text{i + j + k}}} \right) + \left( {{\text{7i - 2j - 5k}}} \right)
Hence option ‘A’ is the correct answer.

Note: Here, the student may get confused that how a1+a2+a3=0{{\text{a}}_1} + {{\text{a}}_2} + {{\text{a}}_3} = 0. So remember we said that since y is perpendicular to i + j + k{\text{i + j + k}} so their dot product will be zero. And here, we assumed that y=a1i + a2j + a3k{{\text{a}}_1}{\text{i + }}{{\text{a}}_2}{\text{j + }}{{\text{a}}_3}{\text{k}}.
So (a1i + a2j + a3k).(i + j + k)=0\left( {{{\text{a}}_1}{\text{i + }}{{\text{a}}_2}{\text{j + }}{{\text{a}}_3}{\text{k}}} \right).\left( {{\text{i + j + k}}} \right) = 0
We will multiply the coefficient of i, j and k.
(a1×1)+(a2×1)+(a3×1)=0\Rightarrow \left( {{{\text{a}}_1} \times 1} \right) + \left( {{{\text{a}}_2} \times 1} \right) + \left( {{{\text{a}}_3} \times 1} \right) = 0
Which means that a1+a2+a3=0{{\text{a}}_1} + {{\text{a}}_2} + {{\text{a}}_3} = 0.