Question
Mathematics Question on Statistics
If the variance of the frequency distribution is 160, then the value of c∈N is: \begin{array}{|c|c|c|c|c|c|c|} \hline x & c & 2c & 3c & 4c & 5c & 6c \\\ \hline f & 2 & 1 & 1 & 1 & 1 & 1 \\\ \hline \end{array}
5
8
7
6
7
Solution
The variance formula for a frequency distribution is:
Variance=∑f∑fx2−(∑f∑fx)2.
From the table, we calculate ∑f, ∑fx, and ∑fx2:
x | f | f×x | f×x2 |
---|---|---|---|
c | 2 | 2c | 2c2 |
2c | 1 | 2c | 4c2 |
3c | 1 | 3c | 9c2 |
4c | 1 | 4c | 16c2 |
5c | 1 | 5c | 25c2 |
6c | 1 | 6c | 36c2 |
Total | 7 | 22c | 92c2 |
Step 1: Variance formula. Substitute into the formula:
Variance=∑f∑fx2−(∑f∑fx)2.
Substitute ∑f=7, ∑fx=22c, and ∑fx2=92c2:
Variance=792c2−(722c)2.
Simplify:
Variance=792c2−72(22c)2. Variance=792c2−49484c2.
Take the LCM of 7 and 49:
Variance=49(92⋅7)c2−484c2. Variance=49644c2−484c2. Variance=49160c2.
Step 2: Set variance to 160. The problem states that the variance is 160. Therefore:
49160c2=160.
Simplify:
160c2=160⋅49. c2=49⟹c=7.
Final Answer: c=7