Solveeit Logo

Question

Mathematics Question on Statistics

If the variance of the frequency distribution is 160, then the value of cNc \in \mathbb{N} is: \begin{array}{|c|c|c|c|c|c|c|} \hline x & c & 2c & 3c & 4c & 5c & 6c \\\ \hline f & 2 & 1 & 1 & 1 & 1 & 1 \\\ \hline \end{array}

A

5

B

8

C

7

D

6

Answer

7

Explanation

Solution

The variance formula for a frequency distribution is:

Variance=fx2f(fxf)2.\text{Variance} = \frac{\sum fx^2}{\sum f} - \left( \frac{\sum fx}{\sum f} \right)^2.

From the table, we calculate f\sum f, fx\sum fx, and fx2\sum fx^2:

xxfff×xf \times xf×x2f \times x^2
c222c2c22c^2
2c112c4c24c^2
3c113c9c29c^2
4c114c16c216c^2
5c115c25c225c^2
6c116c36c236c^2
Total722c92c292c^2

Step 1: Variance formula. Substitute into the formula:

Variance=fx2f(fxf)2.\text{Variance} = \frac{\sum fx^2}{\sum f} - \left( \frac{\sum fx}{\sum f} \right)^2.

Substitute f=7\sum f = 7, fx=22c\sum fx = 22c, and fx2=92c2\sum fx^2 = 92c^2:

Variance=92c27(22c7)2.\text{Variance} = \frac{92c^2}{7} - \left( \frac{22c}{7} \right)^2.

Simplify:

Variance=92c27(22c)272.\text{Variance} = \frac{92c^2}{7} - \frac{(22c)^2}{7^2}. Variance=92c27484c249.\text{Variance} = \frac{92c^2}{7} - \frac{484c^2}{49}.

Take the LCM of 7 and 49:

Variance=(927)c2484c249.\text{Variance} = \frac{(92 \cdot 7)c^2 - 484c^2}{49}. Variance=644c2484c249.\text{Variance} = \frac{644c^2 - 484c^2}{49}. Variance=160c249.\text{Variance} = \frac{160c^2}{49}.

Step 2: Set variance to 160. The problem states that the variance is 160. Therefore:

160c249=160.\frac{160c^2}{49} = 160.

Simplify:

160c2=16049.160c^2 = 160 \cdot 49. c2=49    c=7.c^2 = 49 \implies c = 7.

Final Answer: c=7c = 7