Solveeit Logo

Question

Question: If the value the trigonometric ratio \[\sin \theta =\dfrac{3}{4}\], prove that \[\sqrt{\dfrac{{{\...

If the value the trigonometric ratio sinθ=34\sin \theta =\dfrac{3}{4}, prove that
cosec2θcot2θsec2θ1=73\sqrt{\dfrac{{{\operatorname{cosec}}^{2}}\theta -{{\cot }^{2}}\theta }{{{\sec }^{2}}\theta -1}}=\dfrac{\sqrt{7}}{3}

Explanation

Solution

First of all, consider a triangle ABC, with C as the angle θ\theta . Now as sinθ=34\sin \theta =\dfrac{3}{4}. So, consider perpendicular and hypotenuse at 3x and 4x respectively. Now, find the remaining side by using the Pythagoras theorem. Now, find cosecθ,cotθ and secθ\operatorname{cosec}\theta ,\cot \theta \text{ and }\sec \theta from this triangle and then substitute in the LHS to prove the desired result.

Complete step-by-step answer:
Here, we are given that sinθ=34\sin \theta =\dfrac{3}{4}. We have to prove that cosec2θcot2θsec2θ1=73\sqrt{\dfrac{{{\operatorname{cosec}}^{2}}\theta -{{\cot }^{2}}\theta }{{{\sec }^{2}}\theta -1}}=\dfrac{\sqrt{7}}{3}.
We are given that,
sinθ=34....(i)\sin \theta =\dfrac{3}{4}....\left( i \right)
We know that,
sinθ=PerpendicularHypotenuse....(ii)\sin \theta =\dfrac{Perpendicular}{Hypotenuse}....\left( ii \right)
From equation (i) and (ii), we get,
34=PerpendicularHypotenuse\dfrac{3}{4}=\dfrac{Perpendicular}{Hypotenuse}
Let us consider a triangle ABC, right-angled at B and angle C is θ\theta .

Let perpendicular AB be equal to 3x and hypotenuse be equal to 4x.
We know that Pythagoras theorem states that in a right-angled triangle, the square of the hypotenuse side is equal to the sum of the squares of the other two sides. So, in the above triangle ABC, by applying Pythagoras theorem, we get,
(AB)2+(BC)2=(AC)2{{\left( AB \right)}^{2}}+{{\left( BC \right)}^{2}}={{\left( AC \right)}^{2}}
Now by substituting the value of AB = 3x and AC = 4x, we get,
(3x)2+(BC)2=(4x)2{{\left( 3x \right)}^{2}}+{{\left( BC \right)}^{2}}={{\left( 4x \right)}^{2}}
9x2+(BC)2=16x29{{x}^{2}}+{{\left( BC \right)}^{2}}=16{{x}^{2}}
BC2=16x29x2B{{C}^{2}}=16{{x}^{2}}-9{{x}^{2}}
BC2=7x2B{{C}^{2}}=7{{x}^{2}}
BC=7xBC=\sqrt{7}x
Now, we know that,
cosecθ=HypotenusePerpendicular\operatorname{cosec}\theta =\dfrac{Hypotenuse}{Perpendicular}
cotθ=BasePerpendicular\cot \theta =\dfrac{Base}{Perpendicular}
secθ=HypotenuseBase\sec \theta =\dfrac{Hypotenuse}{Base}
We can see that with respect to angle θ\theta ,
Perpendicular = AB = 3x
Base = BC = 7x\sqrt{7}x
Hypotenuse = AC = 4x
So, we get,
cosecθ=ACAB=4x3x=43\operatorname{cosec}\theta =\dfrac{AC}{AB}=\dfrac{4x}{3x}=\dfrac{4}{3}
cotθ=BCAB=7x3x=73\cot \theta =\dfrac{BC}{AB}=\dfrac{\sqrt{7}x}{3x}=\dfrac{\sqrt{7}}{3}
secθ=ACBC=4x7x=47\sec \theta =\dfrac{AC}{BC}=\dfrac{4x}{\sqrt{7}x}=\dfrac{4}{\sqrt{7}}
Now, let us consider the LHS of the equation given in the question,
LHS=cosec2θcot2θsec2θ1LHS=\sqrt{\dfrac{{{\operatorname{cosec}}^{2}}\theta -{{\cot }^{2}}\theta }{{{\sec }^{2}}\theta -1}}
By substituting the value of cosecθ,cotθ and secθ\operatorname{cosec}\theta ,\cot \theta \text{ and }\sec \theta , we get,
LHS=(43)2(73)2(47)21LHS=\sqrt{\dfrac{{{\left( \dfrac{4}{3} \right)}^{2}}-{{\left( \dfrac{\sqrt{7}}{3} \right)}^{2}}}{{{\left( \dfrac{4}{\sqrt{7}} \right)}^{2}}-1}}
LHS=169791671LHS=\sqrt{\dfrac{\dfrac{16}{9}-\dfrac{7}{9}}{\dfrac{16}{7}-1}}
LHS=9997LHS=\sqrt{\dfrac{\dfrac{9}{9}}{\dfrac{9}{7}}}
LHS=197LHS=\sqrt{\dfrac{1}{\dfrac{9}{7}}}
LHS=79LHS=\sqrt{\dfrac{7}{9}}
LHS=73=RHSLHS=\dfrac{\sqrt{7}}{3}=RHS
Hence proved
So, we have proved that
cosec2θcot2θsec2θ1=73\sqrt{\dfrac{{{\operatorname{cosec}}^{2}}\theta -{{\cot }^{2}}\theta }{{{\sec }^{2}}\theta -1}}=\dfrac{\sqrt{7}}{3}

Note: Students can also solve this question in the following way,
LHS=cosec2θcot2θsec2θ1LHS=\sqrt{\dfrac{{{\operatorname{cosec}}^{2}}\theta -{{\cot }^{2}}\theta }{{{\sec }^{2}}\theta -1}}
We know that 1+cot2θ=cosec2θ1+{{\cot }^{2}}\theta ={{\operatorname{cosec}}^{2}}\theta or cosec2θcot2θ=1{{\operatorname{cosec}}^{2}}\theta -{{\cot }^{2}}\theta =1. Also, we know that sec2θ1=tan2θ{{\sec }^{2}}\theta -1={{\tan }^{2}}\theta . By using these, we get,
LHS=1tan2θ=1tanθLHS=\sqrt{\dfrac{1}{{{\tan }^{2}}\theta }}=\dfrac{1}{\tan \theta }
We know that,
tanθ=PB=37\tan \theta =\dfrac{P}{B}=\dfrac{3}{\sqrt{7}}
So, we get,
LHS=137=73=RHSLHS=\dfrac{1}{\dfrac{3}{\sqrt{7}}}=\dfrac{\sqrt{7}}{3}=RHS
Hence proved