Solveeit Logo

Question

Question: If the value of \[y={{\sin }^{-1}}\left( x.\sqrt{1-x}+\sqrt{x}\sqrt{1-{{x}^{2}}} \right)\], then the...

If the value of y=sin1(x.1x+x1x2)y={{\sin }^{-1}}\left( x.\sqrt{1-x}+\sqrt{x}\sqrt{1-{{x}^{2}}} \right), then the value of dydx\dfrac{dy}{dx} is
(a) 2x1x2+12xx2\dfrac{-2x}{\sqrt{1-{{x}^{2}}}}+\dfrac{1}{2\sqrt{x-{{x}^{2}}}}
(b) 11x212xx2\dfrac{-1}{\sqrt{1-{{x}^{2}}}}-\dfrac{1}{2\sqrt{x-{{x}^{2}}}}
(c) 11x2+12xx2\dfrac{1}{\sqrt{1-{{x}^{2}}}}+\dfrac{1}{2\sqrt{x-{{x}^{2}}}}
(d) None of these

Explanation

Solution

Hint : To solve this question we will use various trigonometric identities. Some of them are as follows- sinA.cosB+cosA.sinB=sin(A+B)\sin A.\cos B+\cos A.\sin B=\sin \left( A+B \right).
sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1 and ddxsin1x=11x2\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}. First we will make proper substitution then we will use above identities to get the result.

Complete step-by-step answer :
Given that, y=sin1(x.1x+x1x2)y={{\sin }^{-1}}\left( x.\sqrt{1-x}+\sqrt{x}\sqrt{1-{{x}^{2}}} \right).
First of all we will simplify the given terms for that we will make certain assumptions.
Let x=sinAx=\sin A and x=sinB\sqrt{x}=\sin B.
Now as, x=sinAx=\sin A.
And we have a trigonometric formula which is given as, sin2θ+cos2θ=1{{\sin }^{2}}\theta +{{\cos }^{2}}\theta =1.
sin2θ=1cos2θ\Rightarrow {{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta
Taking square root both sides we get,
sinθ=1cosθ\sin \theta =\sqrt{1-\cos \theta } - (1)
Now we have, x=sinAx=\sin A
Using equation (1), we get
1x2=cosA\sqrt{1-{{x}^{2}}}=\cos A
This is so as, x=sinAx=\sin A
Squaring both sides x2=sin2A\Rightarrow {{x}^{2}}={{\sin }^{2}}A.
1x2=1sin2A\Rightarrow 1-{{x}^{2}}=1-{{\sin }^{2}}A
And taking under root we have,
1x2=1sin2A\Rightarrow \sqrt{1-{{x}^{2}}}=\sqrt{1-{{\sin }^{2}}A}
1x2=cosA\Rightarrow \sqrt{1-{{x}^{2}}}=\cos A - (2)
Similarly we have, x=sinB\sqrt{x}=\sin B.
Again using equation (i) we have,
(1x)2=cosB\sqrt{{{\left( 1-\sqrt{x} \right)}^{2}}}=\cos B
1x=cosB\Rightarrow \sqrt{1-x}=\cos B - (3)
Finally we will use obtained values in the value of y.
Substituting the value of equation (2) and (3) in value of y we get;
y=sin1(sinAcosB+cosAsinB)y={{\sin }^{-1}}\left( \sin A\cos B+\cos A\sin B \right)
Now we will use trigonometric identity given as,
sin(A+B)=sinAcosB+cosAsinB\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B
Using this identity in value of y we get;

& y={{\sin }^{-1}}\left( \sin \left( A+B \right) \right) \\\ & \Rightarrow y=\left( A+B \right) \\\ \end{aligned}$$ Now we had, $$x=\sin A$$. Taking $${{\sin }^{-1}}$$ both sides we have, $${{\sin }^{-1}}x=A$$. And we had $$\sqrt{x}=\sin B$$. Again taking $${{\sin }^{-1}}$$ both sides we have, $${{\sin }^{-1}}\sqrt{x}=B$$. Substituting the value of A & B in y we get, $$y={{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{x}$$ Now finally we will differentiate the obtained values. For that we will the formula of differentiation of $${{\sin }^{-1}}x$$ which is $$\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}$$. Using this formula and differentiating y with respect to x we get, $$\dfrac{d}{dx}=\dfrac{d}{dx}\left( {{\sin }^{-1}}x+{{\sin }^{-1}}\sqrt{x} \right)$$ Using, $$\dfrac{d}{dx}{{\sin }^{-1}}x=\dfrac{1}{\sqrt{1-{{x}^{2}}}}$$ we get, Applying chain rule of differentiation we get, $$\dfrac{dy}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}+\dfrac{1}{\sqrt{1-{{\left( \sqrt{x} \right)}^{2}}}}.\dfrac{1}{2\sqrt{x}}$$ $$\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}+\dfrac{1}{2\sqrt{x}\sqrt{1-\left( x \right)}}$$ Multiplying $$\sqrt{x}$$ inside we get, $$\Rightarrow \dfrac{dy}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}+\dfrac{1}{2\sqrt{x-{{x}^{2}}}}$$ Hence the value of $$\dfrac{dy}{dx}$$ is $$\dfrac{1}{\sqrt{1-{{x}^{2}}}}+\dfrac{1}{2\sqrt{x-{{x}^{2}}}}$$, **So, the correct answer is “Option C”.** **Note** : Students can get confused at the point where we have to differentiate $${{\sin }^{-1}}\sqrt{x}$$. Always remember that we apply chain rule of differentiate in such cases, The derivative is done as follows – $$\begin{aligned} & \dfrac{d}{dx}\left( {{\sin }^{-1}}\sqrt{x} \right)=\dfrac{d}{dx}\left( {{\sin }^{-1}}\sqrt{x} \right)=\dfrac{1}{\sqrt{1-{{\left( \sqrt{x} \right)}^{2}}}}\dfrac{d}{dx}\sqrt{x} \\\ & \Rightarrow \dfrac{d}{dx}\left( {{\sin }^{-1}}\sqrt{x} \right)=\dfrac{1}{\sqrt{1-x}}\dfrac{1}{2\sqrt{x}} \\\ \end{aligned}$$