Solveeit Logo

Question

Question: If the value of \(y = \log \left[ {\tan x} \right],\) find\(\frac{{dy}}{{dx}}\)....

If the value of y=log[tanx],y = \log \left[ {\tan x} \right], finddydx\frac{{dy}}{{dx}}.

Explanation

Solution

Hint: you can differentiate it by using formulae of logarithm or
Using substitution method.

We have to differentiate it with respect to xx.
We will use a substitution method.
Let, tanx=t\tan x = t
y=logt dy=1tdt \begin{gathered} \therefore y = \log t \\\ dy = \frac{1}{t}dt \\\ \end{gathered}
dydt=1t=1tanx\frac{{dy}}{{dt}} = \frac{1}{t} = \frac{1}{{\tan x}} (1) \ldots \ldots \left( 1 \right)
Now
t=tanx dt=sec2xdx dtdx=sec2x(2) \begin{gathered} t = \tan x \\\ dt = {\sec ^2}xdx \\\ \frac{{dt}}{{dx}} = {\sec ^2}x \ldots \ldots \left( 2 \right) \\\ \end{gathered}
On multiplying equation (1)\left( 1 \right)and (2)\left( 2 \right)
We get,
dydt×dtdx=sec2xtanx dydx=cosxcosx.cosx.sinx=1sinx.cosx dydx=1sinx.cosx \begin{gathered} \frac{{dy}}{{dt}} \times \frac{{dt}}{{dx}} = \frac{{{{\sec }^2}x}}{{\tan x}} \\\ \frac{{dy}}{{dx}} = \frac{{\cos x}}{{\cos x.\cos x.\sin x}} = \frac{1}{{\sin x.\cos x}} \\\ \frac{{dy}}{{dx}} = \frac{1}{{\sin x.\cos x}} \\\ \end{gathered}
Is the required answer.

Note:Using a substitution method you can solve easily. You have to find
Differentiation with respect to xx, then you can differentiate it with respect
to tt and further differentiate tt with respect to xx