Solveeit Logo

Question

Question: If the value of x, y and z are given as \(x = a + b\), \(y = a\alpha + b\beta \) and \(z = a\beta + ...

If the value of x, y and z are given as x=a+bx = a + b, y=aα+bβy = a\alpha + b\beta and z=aβ+bαz = a\beta + b\alpha , where α,β\alpha ,\beta complex cube are roots of unity, show that xyz=a3+b3xyz = {a^3} + {b^3}.

Explanation

Solution

Hint: In this question α=ω,β=ω2\alpha = \omega ,\beta = {\omega ^2}, firstly substitute the value of x, y and z into xyzxyz and then substitute the value ofα,β\alpha ,\beta . Use the properties of complex cube roots of unity like1+ω+ω2=0,ω3=11 + \omega + {\omega ^2} = 0, {\omega ^3} = 1, to get the answer.

Complete step-by-step answer:

x=a+bx = a + b, y=aα+bβy = a\alpha + b\beta and z=aβ+bαz = a\beta + b\alpha where α,β\alpha ,\beta are the complex cube root of unity.
So if α,β\alpha ,\beta are the complex cube root of unity.
So let α=ω,β=ω2\alpha = \omega ,\beta = {\omega ^2} and it satisfy the equation
1+ω+ω2=0,ω3=11 + \omega + {\omega ^2} = 0,{\omega ^3} = 1........................... (1)
Now we have to prove
xyz=a3+b3xyz = {a^3} + {b^3}
Proof –
Consider L.H.S
xyz\Rightarrow xyz
Now substitute the value of x, y and z we have,
(a+b)(aα+bβ)(aβ+bα)\Rightarrow \left( {a + b} \right)\left( {a\alpha + b\beta } \right)\left( {a\beta + b\alpha } \right)
Now simplify the above equation we have,
(a+b)(a2αβ+abα2+abβ2+b2αβ)\Rightarrow \left( {a + b} \right)\left( {{a^2}\alpha \beta + ab{\alpha ^2} + ab{\beta ^2} + {b^2}\alpha \beta } \right)
a3αβ+a2bα2+a2bβ2+ab2αβ+a2bαβ+ab2α2+ab2β2+b3αβ\Rightarrow {a^3}\alpha \beta + {a^2}b{\alpha ^2} + {a^2}b{\beta ^2} + a{b^2}\alpha \beta + {a^2}b\alpha \beta + a{b^2}{\alpha ^2} + a{b^2}{\beta ^2} + {b^3}\alpha \beta
Now substitute α=ω,β=ω2\alpha = \omega ,\beta = {\omega ^2} in this equation we have,
a3ω3+a2bω2+a2bω4+ab2ω3+a2bω3+ab2ω2+ab2ω4+b3ω3\Rightarrow {a^3}{\omega ^3} + {a^2}b{\omega ^2} + {a^2}b{\omega ^4} + a{b^2}{\omega ^3} + {a^2}b{\omega ^3} + a{b^2}{\omega ^2} + a{b^2}{\omega ^4} + {b^3}{\omega ^3}
Now substitute ω3=1{\omega ^3} = 1 we have,
a3+a2bω2+a2bω+ab2+a2b+ab2ω2+ab2ω+b3\Rightarrow {a^3} + {a^2}b{\omega ^2} + {a^2}b\omega + a{b^2} + {a^2}b + a{b^2}{\omega ^2} + a{b^2}\omega + {b^3}
Now take a2b{a^2}b common from second, third and fifth term and take common ab2a{b^2}from fourth, fifth and seventh term we have.
a3+a2b(1+ω+ω2)+ab2(1+ω+ω2)+b3\Rightarrow {a^3} + {a^2}b\left( {1 + \omega + {\omega ^2}} \right) + a{b^2}\left( {1 + \omega + {\omega ^2}} \right) + {b^3}
Now from equation (1) we have,
a3+a2b(0)+ab2(0)+b3=a3+b3\Rightarrow {a^3} + {a^2}b\left( 0 \right) + a{b^2}\left( 0 \right) + {b^3} = {a^3} + {b^3}
= R.H.S
Hence proved.

Note: The complex cube root of unity refers to cube root of 1 that is (1)13=(1,ω,ω2){\left( 1 \right)^{\dfrac{1}{3}}} = \left( {1,\omega ,{\omega ^2}} \right). It is advised to remember the basic cube root of unity properties, some of them are being mentioned above. The basic concept of cube root arises by the roots of quadratic equationx2+x+1=0{x^2} + x + 1 = 0, so the roots of this are ω=1±i32\omega = \dfrac{{ - 1 \pm i\sqrt 3 }}{2}.