Solveeit Logo

Question

Question: If the value of x satisfying the equation $\sin^{-1}\sqrt{1-x^2}=\tan^{-1}\frac{\sqrt{2-1}}{x}$ is $...

If the value of x satisfying the equation sin11x2=tan121x\sin^{-1}\sqrt{1-x^2}=\tan^{-1}\frac{\sqrt{2-1}}{x} is ab\frac{a}{b} (where a and b are coprime), then the value of a2+b2a^2+b^2 is

A

0

B

1

C

2

D

4

Answer

1

Explanation

Solution

We are given

sin11x2=tan121x.\sin^{-1}\sqrt{1-x^2}=\tan^{-1}\frac{\sqrt{2-1}}{x}.

Notice that 21=1=1\sqrt{2-1}=\sqrt{1}=1. Thus the equation becomes

sin11x2=tan11x.\sin^{-1}\sqrt{1-x^2}=\tan^{-1}\frac{1}{x}\,.

Step 1. Rewrite the left‐side:

Recall that for 0x10\le x\le1 we have

sin11x2=cos1x.\sin^{-1}\sqrt{1-x^2}=\cos^{-1}x\,.

Thus the equation is equivalent to

cos1x=tan11x.\cos^{-1} x=\tan^{-1}\frac{1}{x}\,.

Step 2. Express right‐side in terms of inverse cosine:

We know the complementary angle identity

tan11x=π2tan1xfor x>0,\tan^{-1}\frac{1}{x}=\frac{\pi}{2}-\tan^{-1}x\quad\text{for }x>0,

but a more direct way here is to take tangent on both sides of

cos1x=tan11x.\cos^{-1} x = \tan^{-1}\frac{1}{x}.

Let θ=cos1x\theta=\cos^{-1}x. Then

  • x=cosθx=\cos\theta, and
  • sinθ=1cos2θ=1x2\sin\theta=\sqrt{1-\cos^2\theta}=\sqrt{1-x^2}.

Now,

tan(cos1x)=tanθ=sinθcosθ=1x2x.\tan (\cos^{-1}x)=\tan\theta=\frac{\sin\theta}{\cos\theta}=\frac{\sqrt{1-x^2}}{x}\,.

On the other side, since θ=tan1(1/x)\theta=\tan^{-1}(1/x) we have

tanθ=1x.\tan\theta=\frac{1}{x}\,.

Thus, equate:

1x2x=1x.\frac{\sqrt{1-x^2}}{x}=\frac{1}{x}\,.

Step 3. Solve for xx:

Since x0x\neq 0 appears in the denominator, multiplying both sides by xx (and we will later discuss the x=0x=0 case separately) gives

1x2=1.\sqrt{1-x^2}=1\,.

Squaring both sides,

1x2=1x2=0,1-x^2=1\quad\Longrightarrow\quad x^2=0\,,

so

x=0.x=0\,.

Step 4. Check the solution x=0x=0:

If we set x=0x=0 directly, note that

sin1102=sin1(1)=π2.\sin^{-1}\sqrt{1-0^2}=\sin^{-1}(1)=\frac{\pi}{2}\,.

On the other hand,

tan110\tan^{-1}\frac{1}{0}

is not defined in the usual sense but we interpret 10\frac{1}{0} in the limiting sense as ++\infty, and

tan1(+)=π2.\tan^{-1}(+\infty)=\frac{\pi}{2}\,.

Thus, x=0x=0 is acceptable as the solution in the limiting sense.

Since the problem states “x=abx=\frac{a}{b}” with aa and bb coprime, we express 00 as 01\frac{0}{1}. Then

a2+b2=02+12=1.a^2+b^2=0^2+1^2=1\,.