Question
Question: If the value of x satisfying the equation $\sin^{-1}\sqrt{1-x^2}=\tan^{-1}\sqrt{\frac{2}{x}-1}$ is $...
If the value of x satisfying the equation sin−11−x2=tan−1x2−1 is ba (where a and b are coprime), then the value of a2+b2 is
Answer
5
Explanation
Solution
Given:
sin−11−x2=tan−1x2−1Let θ=sin−11−x2. Then:
sinθ=1−x2andcosθ=x(since x>0)Thus,
tanθ=cosθsinθ=x1−x2.On the right-hand side, if we set ϕ=tan−1x2−1, then:
tanϕ=x2−1.Since the equation equates the angles, we have θ=ϕ, so:
x1−x2=x2−1.Squaring both sides:
x21−x2=x2−1.Multiply both sides by x2:
1−x2=2x−x2.Cancel −x2 from both sides:
1=2x⇒x=21.Since x=ba=21 with a=1 and b=2, we compute:
a2+b2=12+22=1+4=5.