Solveeit Logo

Question

Question: If the value of x satisfying the equation $\sin^{-1}\sqrt{1-x^2}=\tan^{-1}\sqrt{\frac{2}{x}-1}$ is $...

If the value of x satisfying the equation sin11x2=tan12x1\sin^{-1}\sqrt{1-x^2}=\tan^{-1}\sqrt{\frac{2}{x}-1} is ab\frac{a}{b} (where a and b are coprime), then the value of a2+b2a^2 + b^2 is

Answer

5

Explanation

Solution

Given:

sin11x2=tan12x1\sin^{-1}\sqrt{1-x^2} = \tan^{-1}\sqrt{\frac{2}{x}-1}

Let θ=sin11x2\theta = \sin^{-1}\sqrt{1-x^2}. Then:

sinθ=1x2andcosθ=x(since x>0)\sin\theta = \sqrt{1-x^2} \quad \text{and} \quad \cos\theta = x \quad (\text{since } x>0)

Thus,

tanθ=sinθcosθ=1x2x.\tan\theta = \frac{\sin\theta}{\cos\theta} = \frac{\sqrt{1-x^2}}{x}.

On the right-hand side, if we set ϕ=tan12x1\phi = \tan^{-1}\sqrt{\frac{2}{x}-1}, then:

tanϕ=2x1.\tan\phi = \sqrt{\frac{2}{x}-1}.

Since the equation equates the angles, we have θ=ϕ\theta = \phi, so:

1x2x=2x1.\frac{\sqrt{1-x^2}}{x} = \sqrt{\frac{2}{x}-1}.

Squaring both sides:

1x2x2=2x1.\frac{1-x^2}{x^2} = \frac{2}{x}-1.

Multiply both sides by x2x^2:

1x2=2xx2.1 - x^2 = 2x - x^2.

Cancel x2-x^2 from both sides:

1=2xx=12.1 = 2x \quad \Rightarrow \quad x = \frac{1}{2}.

Since x=ab=12x=\frac{a}{b}=\frac{1}{2} with a=1a=1 and b=2b=2, we compute:

a2+b2=12+22=1+4=5.a^2 + b^2 = 1^2 + 2^2 = 1 + 4 = 5.