Solveeit Logo

Question

Question: If the value of x satisfying the equation $\sin^{-1}\sqrt{1-x^2}=\tan^{-1}\sqrt{\frac{2}{x}-1}$ is $...

If the value of x satisfying the equation sin11x2=tan12x1\sin^{-1}\sqrt{1-x^2}=\tan^{-1}\sqrt{\frac{2}{x}-1} is ab\frac{a}{b} (where a and b are coprime), then the value of a2+b2a^2 + b^2 is

Answer

5

Explanation

Solution

Solution:

Given the equation:

sin11x2=tan12x1\sin^{-1}\sqrt{1-x^2}=\tan^{-1}\sqrt{\frac{2}{x}-1}
  1. Substitution: Let x=cosθx = \cos\theta (with 0θπ20 \leq \theta \leq \frac{\pi}{2}), so that

    1x2=sinθ.\sqrt{1-x^2} = \sin\theta.

    Hence, the left side becomes:

    sin1(sinθ)=θ.\sin^{-1}(\sin\theta)=\theta.
  2. Rewrite the Equation: Then the equation becomes:

    θ=tan12cosθ1.\theta=\tan^{-1}\sqrt{\frac{2}{\cos\theta}-1}.

    Taking the tangent on both sides:

    tanθ=2cosθ1.\tan\theta=\sqrt{\frac{2}{\cos\theta}-1}.
  3. Express tanθ\tan\theta: But tanθ=sinθcosθ=1cos2θcosθ\tan\theta=\frac{\sin\theta}{\cos\theta}=\frac{\sqrt{1-\cos^2\theta}}{\cos\theta}. Hence:

    1cos2θcosθ=2cosθ1.\frac{\sqrt{1-\cos^2\theta}}{\cos\theta}=\sqrt{\frac{2}{\cos\theta}-1}.
  4. Square Both Sides: Squaring gives:

    1cos2θcos2θ=2cosθ1.\frac{1-\cos^2\theta}{\cos^2\theta}=\frac{2}{\cos\theta}-1.

    Multiply both sides by cos2θ\cos^2\theta:

    1cos2θ=2cosθcos2θ.1-\cos^2\theta=2\cos\theta-\cos^2\theta.
  5. Solve for cosθ\cos\theta: Cancel cos2θ-\cos^2\theta from both sides:

    1=2cosθcosθ=12.1=2\cos\theta \quad\Longrightarrow\quad \cos\theta=\frac{1}{2}.

    Since x=cosθx=\cos\theta, we obtain:

    x=12.x=\frac{1}{2}.
  6. Final Step: Writing x=abx=\frac{a}{b} with aa and bb coprime gives a=1a=1 and b=2b=2. Then:

    a2+b2=12+22=1+4=5.a^2+b^2=1^2+2^2=1+4=5.