Solveeit Logo

Question

Question: If the value of x is given in the interval as \(0 < x \leq \dfrac{\pi }{2} \) then find the minimum ...

If the value of x is given in the interval as 0<xπ20 < x \leq \dfrac{\pi }{2} then find the minimum value of sinx + cscx\sin x\text{ + }\csc x.
A. 0
B. -1
C. 1
D. 2

Explanation

Solution

Hint: According to the question, it has been said that x is an acute angle. So, any trigonometric operation will be naturally a positive quantity. Thus, both sin x and cosec x are positive values. We know, for two positive quantities, Arithmetic Mean of those quantities is greater than or equal to the geometric mean of those quantities, i.e. A.M.  G.M.\text{A}\text{.M}\text{. }\ge \text{ G}\text{.M}\text{.} Apply this inequality to find the minimum value of sinx + cosecx.

Complete step-by-step answer:
It is given that 0<xπ20 < x \leq \dfrac{\pi }{2} . Thus, x is an acute angle.
Therefore, both sin x and cosec x are positive quantities. Therefore, we can apply the inequality A.M.  G.M.\text{A}\text{.M}\text{. }\ge \text{ G}\text{.M}\text{.} on the two positive quantities sinx and cosecx, where 0<xπ20 < x \leq \dfrac{\pi }{2} .
We also know that cosec x is the reciprocal value of sinx. Thus, we can write,
cosecx = 1sinx\cos \text{ec}x\text{ = }\dfrac{1}{\sin x}
Applying A.M.  G.M.\text{A}\text{.M}\text{. }\ge \text{ G}\text{.M}\text{.}on sinx and cosecx, we get,
sinx + cosecx2  sinxcosecx  sinx + cosecx2  sinx1sinx ( cosecx = 1sinx )  sinx + cosecx2  1  sinx + cosecx  2 \begin{aligned} & \dfrac{\sin x\text{ + }\cos \text{ec}x}{2}\text{ }\ge \text{ }\sqrt{\sin x\cdot \operatorname{cose}\text{c}x} \\\ & \Rightarrow \text{ }\dfrac{\sin x\text{ + }\cos \text{ec}x}{2}\text{ }\ge \text{ }\sqrt{\sin x\cdot \dfrac{1}{\sin x}}\text{ }\left( \because \text{ }\cos \text{ec}x\text{ = }\dfrac{1}{\sin x}\text{ } \right) \\\ & \Rightarrow \text{ }\dfrac{\sin x\text{ + }\cos \text{ec}x}{2}\text{ }\ge \text{ 1} \\\ & \therefore \text{ }\sin x\text{ + }\cos \text{ec}x\text{ }\ge \text{ 2} \\\ \end{aligned}
Therefore, the minimum value of sinx + cosecx is 2.
Thus, the correct answer is option A.

Note: Alternatively, this problem can be solved without using the AM-GM inequality. We know that the square value of any quantity is always positive. Thus, we can write (sinx1)2  0{{\left( \sin x-1 \right)}^{2}}\text{ }\ge \text{ 0}. Using this inequality, we can subsequently prove,
(sinx1)2  0  sin2x  2sinx + 1  0 \begin{aligned} & {{\left( \sin x-1 \right)}^{2}}\text{ }\ge \text{ 0} \\\ & \Rightarrow \text{ si}{{\text{n}}^{2}}x\text{ }-\text{ 2}\sin x\text{ + 1 }\ge \text{ 0} \\\ \end{aligned}
As sinx is open at x = 0, so sinx can never be zero. So, dividing by sin x on both sides of the above equation, we get,
sinx  2 + 1sinx  0  sinx + 1sinx  2   sinx + cosecx  2 \begin{aligned} & \sin x\text{ }-\text{ 2 + }\dfrac{1}{\sin x}\text{ }\ge \text{ 0} \\\ & \Rightarrow \text{ }\sin x\text{ + }\dfrac{1}{\sin x}\text{ }\ge \text{ 2 } \\\ & \therefore \text{ }\sin x\text{ + }\cos \text{ec}x\text{ }\ge \text{ 2} \\\ \end{aligned}
Thus, by alternative method as well, we get the minimum value of sinx + cosecx to be equal to 2. Also note that, the range is discontinuous at x = 0, where the value of cosec x is undefined.