Solveeit Logo

Question

Question: If the value of \[{{x}^{2}}+{{y}^{2}}={{r}^{2}}\], find the value of \[{{\left( \dfrac{{{d}^{3}}y}{d...

If the value of x2+y2=r2{{x}^{2}}+{{y}^{2}}={{r}^{2}}, find the value of (d3ydx3)x=0{{\left( \dfrac{{{d}^{3}}y}{d{{x}^{3}}} \right)}_{x=0}}.

Explanation

Solution

Hint: Differentiate the given function thrice to find the third derivative of the given function. This is an implicit function which is written in terms of both dependent and independent variables. Substitute the value x=0x=0 in the derivatives of the given function to find the value of (d3ydx3)x=0{{\left( \dfrac{{{d}^{3}}y}{d{{x}^{3}}} \right)}_{x=0}}.

Complete step-by-step answer:
We have the function x2+y2=r2{{x}^{2}}+{{y}^{2}}={{r}^{2}}. We have to evaluate its third derivative.
We will begin by differentiating the given function with respect to the variable xx.
Thus, we have ddx(x2+y2)=ddx(r2)\dfrac{d}{dx}\left( {{x}^{2}}+{{y}^{2}} \right)=\dfrac{d}{dx}\left( {{r}^{2}} \right).
We will use the sum rule of differentiation. Thus, we have ddx(x2+y2)=ddx(x2)+ddx(y2)=ddx(r2).....(1)\dfrac{d}{dx}\left( {{x}^{2}}+{{y}^{2}} \right)=\dfrac{d}{dx}\left( {{x}^{2}} \right)+\dfrac{d}{dx}\left( {{y}^{2}} \right)=\dfrac{d}{dx}\left( {{r}^{2}} \right).....\left( 1 \right).
We know that differentiation of a constant is zero with respect to any variable. Thus, we have ddx(r2)=0.....(2)\dfrac{d}{dx}\left( {{r}^{2}} \right)=0.....\left( 2 \right).
We know that differentiation of any function of the form y=axny=a{{x}^{n}} is dydx=anxn1\dfrac{dy}{dx}=an{{x}^{n-1}}.
Substituting a=1,n=2a=1,n=2 in the above equation, we have ddx(x2)=2x.....(3)\dfrac{d}{dx}\left( {{x}^{2}} \right)=2x.....\left( 3 \right).
To find the value of ddx(y2)\dfrac{d}{dx}\left( {{y}^{2}} \right), we will multiply and divide the given equation by dydy.
Thus, we have ddx(y2)=ddy(y2)×dydx\dfrac{d}{dx}\left( {{y}^{2}} \right)=\dfrac{d}{dy}\left( {{y}^{2}} \right)\times \dfrac{dy}{dx}.
We know that ddy(y2)=2y\dfrac{d}{dy}\left( {{y}^{2}} \right)=2y.
Thus, we have ddx(y2)=ddy(y2)×dydx=2ydydx.....(4)\dfrac{d}{dx}\left( {{y}^{2}} \right)=\dfrac{d}{dy}\left( {{y}^{2}} \right)\times \dfrac{dy}{dx}=2y\dfrac{dy}{dx}.....\left( 4 \right).
Substituting the value of equation (2),(3),(4)\left( 2 \right),\left( 3 \right),\left( 4 \right) in equation (1)\left( 1 \right), we get ddx(x2+y2)=ddx(x2)+ddx(y2)=ddx(r2)2x+2ydydx=0\dfrac{d}{dx}\left( {{x}^{2}}+{{y}^{2}} \right)=\dfrac{d}{dx}\left( {{x}^{2}} \right)+\dfrac{d}{dx}\left( {{y}^{2}} \right)=\dfrac{d}{dx}\left( {{r}^{2}} \right)\Rightarrow 2x+2y\dfrac{dy}{dx}=0.
Thus, we have 2x+2ydydx=02x+2y\dfrac{dy}{dx}=0.
We can rewrite this equation as dydx=xy.....(5)\dfrac{dy}{dx}=\dfrac{-x}{y}.....\left( 5 \right).
We will now find the second derivative of the given function. So, we will differentiate the above function again.
We know that d2ydx2=ddx(dydx)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right).
Thus, we have d2ydx2=ddx(dydx)=ddx(xy)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\left( \dfrac{-x}{y} \right).
We will use quotient rule for differentiation of two functions of the form z=f(y)g(y)z=\dfrac{f\left( y \right)}{g\left( y \right)} such that dzdy=g(y)f(y)f(y)g(y)g2(y)\dfrac{dz}{dy}=\dfrac{g\left( y \right)f'\left( y \right)-f\left( y \right)g'\left( y \right)}{{{g}^{2}}\left( y \right)}.
Thus, we have d2ydx2=ddx(dydx)=ddx(xy)=yddx(x)(x)ddx(y)y2.....(6)\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{d}{dx}\left( \dfrac{dy}{dx} \right)=\dfrac{d}{dx}\left( \dfrac{-x}{y} \right)=\dfrac{y\dfrac{d}{dx}\left( -x \right)-\left( -x \right)\dfrac{d}{dx}\left( y \right)}{{{y}^{2}}}.....\left( 6 \right).
We know that differentiation of any function of the form y=axny=a{{x}^{n}} is dydx=anxn1\dfrac{dy}{dx}=an{{x}^{n-1}}.
Thus, we have ddx(x)=1.....(7)\dfrac{d}{dx}\left( -x \right)=-1.....\left( 7 \right).
Substituting equation (5),(7)\left( 5 \right),\left( 7 \right) in equation (6)\left( 6 \right), we have d2ydx2=yddx(x)(x)ddx(y)y2=y(1)+x(xy)y2=1y+xy2(xy)=1yx2y3\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{y\dfrac{d}{dx}\left( -x \right)-\left( -x \right)\dfrac{d}{dx}\left( y \right)}{{{y}^{2}}}=\dfrac{y\left( -1 \right)+x\left( \dfrac{-x}{y} \right)}{{{y}^{2}}}=-\dfrac{1}{y}+\dfrac{x}{{{y}^{2}}}\left( -\dfrac{x}{y} \right)=-\dfrac{1}{y}-\dfrac{{{x}^{2}}}{{{y}^{3}}}.
Hence, we have d2ydx2=1yx2y3\dfrac{{{d}^{2}}y}{d{{x}^{2}}}=\dfrac{-1}{y}-\dfrac{{{x}^{2}}}{{{y}^{3}}}.
We will differentiate the above equation again to find the third derivative of the given function.
Thus, we have d3ydx3=ddx(d2ydx2)=ddx(1yx2y3)\dfrac{{{d}^{3}}y}{d{{x}^{3}}}=\dfrac{d}{dx}\left( \dfrac{{{d}^{2}}y}{d{{x}^{2}}} \right)=\dfrac{d}{dx}\left( \dfrac{-1}{y}-\dfrac{{{x}^{2}}}{{{y}^{3}}} \right).
We can rewrite this as d3ydx3=ddx(1yx2y3)=ddx(1y)+ddx(x2y3).....(8)\dfrac{{{d}^{3}}y}{d{{x}^{3}}}=\dfrac{d}{dx}\left( \dfrac{-1}{y}-\dfrac{{{x}^{2}}}{{{y}^{3}}} \right)=\dfrac{d}{dx}\left( \dfrac{-1}{y} \right)+\dfrac{d}{dx}\left( \dfrac{-{{x}^{2}}}{{{y}^{3}}} \right).....\left( 8 \right).
To find the value of ddx(1y)\dfrac{d}{dx}\left( \dfrac{-1}{y} \right), we will multiply and divide by dydy.
Thus, we have ddx(1y)=ddy(1y)×dydx\dfrac{d}{dx}\left( \dfrac{-1}{y} \right)=\dfrac{d}{dy}\left( \dfrac{-1}{y} \right)\times \dfrac{dy}{dx}.
We know that ddy(1y)=1y2\dfrac{d}{dy}\left( \dfrac{-1}{y} \right)=\dfrac{1}{{{y}^{2}}} as if y=axny=a{{x}^{n}} then dydx=anxn1\dfrac{dy}{dx}=an{{x}^{n-1}}.
Thus, we have ddx(1y)=ddy(1y)×dydx=1y2(xy)=xy3.....(9)\dfrac{d}{dx}\left( \dfrac{-1}{y} \right)=\dfrac{d}{dy}\left( \dfrac{-1}{y} \right)\times \dfrac{dy}{dx}=\dfrac{1}{{{y}^{2}}}\left( \dfrac{-x}{y} \right)=\dfrac{-x}{{{y}^{3}}}.....\left( 9 \right).
To find the value of ddx(x2y3)\dfrac{d}{dx}\left( \dfrac{-{{x}^{2}}}{{{y}^{3}}} \right), we will use quotient rule.
Thus, we have ddx(x2y3)=y3×ddx(x2)(x2)ddx(y3)y6.....(10)\dfrac{d}{dx}\left( \dfrac{-{{x}^{2}}}{{{y}^{3}}} \right)=\dfrac{{{y}^{3}}\times \dfrac{d}{dx}\left( -{{x}^{2}} \right)-\left( -{{x}^{2}} \right)\dfrac{d}{dx}\left( {{y}^{3}} \right)}{{{y}^{6}}}.....\left( 10 \right).
We know that ddx(x2)=2x.....(11)\dfrac{d}{dx}\left( -{{x}^{2}} \right)=-2x.....\left( 11 \right) as if y=axny=a{{x}^{n}} then dydx=anxn1\dfrac{dy}{dx}=an{{x}^{n-1}}.
To find the value of ddx(y3)\dfrac{d}{dx}\left( {{y}^{3}} \right), multiply and divide the equation by dydy.
Thus, we have ddx(y3)=ddy(y3)dydx\dfrac{d}{dx}\left( {{y}^{3}} \right)=\dfrac{d}{dy}\left( {{y}^{3}} \right)\dfrac{dy}{dx}
We know that ddy(y3)=3y2\dfrac{d}{dy}\left( {{y}^{3}} \right)=3{{y}^{2}}.
Thus, we get ddx(y3)=ddy(y3)dydx=3y2(xy)=3xy.....(12)\dfrac{d}{dx}\left( {{y}^{3}} \right)=\dfrac{d}{dy}\left( {{y}^{3}} \right)\dfrac{dy}{dx}=3{{y}^{2}}\left( \dfrac{-x}{y} \right)=-3xy.....\left( 12 \right)
Substituting equation (11),(12)\left( 11 \right),\left( 12 \right) in equation (10)\left( 10 \right), we have ddx(x2y3)=y3×ddx(x2)(x2)ddx(y3)y6=2xy33x3yy6.....(13)\dfrac{d}{dx}\left( \dfrac{-{{x}^{2}}}{{{y}^{3}}} \right)=\dfrac{{{y}^{3}}\times \dfrac{d}{dx}\left( -{{x}^{2}} \right)-\left( -{{x}^{2}} \right)\dfrac{d}{dx}\left( {{y}^{3}} \right)}{{{y}^{6}}}=\dfrac{-2x{{y}^{3}}-3{{x}^{3}}y}{{{y}^{6}}}.....\left( 13 \right)
Substituting equation (9),(13)\left( 9 \right),\left( 13 \right) in equation (8)\left( 8 \right), we have d3ydx3=ddx(1y)+ddx(x2y3)=xy32xy3+3x3yy6\dfrac{{{d}^{3}}y}{d{{x}^{3}}}=\dfrac{d}{dx}\left( \dfrac{-1}{y} \right)+\dfrac{d}{dx}\left( \dfrac{-{{x}^{2}}}{{{y}^{3}}} \right)=\dfrac{-x}{{{y}^{3}}}-\dfrac{2x{{y}^{3}}+3{{x}^{3}}y}{{{y}^{6}}}.
Thus, we have d3ydx3=xy32xy3+3x3yy6\dfrac{{{d}^{3}}y}{d{{x}^{3}}}=\dfrac{-x}{{{y}^{3}}}-\dfrac{2x{{y}^{3}}+3{{x}^{3}}y}{{{y}^{6}}}.
We will now evaluate the value of d3ydx3\dfrac{{{d}^{3}}y}{d{{x}^{3}}} at x=0x=0.
Firstly, we will substitute x=0x=0 in the equation x2+y2=r2{{x}^{2}}+{{y}^{2}}={{r}^{2}}. Thus, we have y2=r2y=±r{{y}^{2}}={{r}^{2}}\Rightarrow y=\pm r.
We will now substitute this value in the equation d3ydx3=xy32xy3+3x3yy6\dfrac{{{d}^{3}}y}{d{{x}^{3}}}=\dfrac{-x}{{{y}^{3}}}-\dfrac{2x{{y}^{3}}+3{{x}^{3}}y}{{{y}^{6}}}.
Thus, we have (d3ydx3)x=0=0(±r)32(0)(±r)3+3(0)3(±r)(±r)6=0+0=0{{\left( \dfrac{{{d}^{3}}y}{d{{x}^{3}}} \right)}_{x=0}}=\dfrac{0}{{{\left( \pm r \right)}^{3}}}-\dfrac{2\left( 0 \right){{\left( \pm r \right)}^{3}}+3{{\left( 0 \right)}^{3}}\left( \pm r \right)}{{{\left( \pm r \right)}^{6}}}=0+0=0.
Hence the value of d3ydx3\dfrac{{{d}^{3}}y}{d{{x}^{3}}} at x=0x=0 is 00.

Note: One needs to use quotient rule and product rule to find the third derivative of the given function. To differentiate an implicit function, we differentiate both sides of an equation by treating one of the variables as a function of the other one.