Solveeit Logo

Question

Question: If the value of \[\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\left( \left( a-n \right)nx-\tan x \righ...

If the value of limx0((an)nxtanx)sinnxx2\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\left( \left( a-n \right)nx-\tan x \right)\sin nx}{{{x}^{2}}} is equal to 0, where n\in R-\left\\{ 0 \right\\}, then the value of ‘a’ is equal to
(a) 0
(b) nn+1\dfrac{n}{n+1}
(c) n
(d) n+1nn+\dfrac{1}{n}

Explanation

Solution

In this question, first all multiply nx to both the numerator and denominator and use lima0sinaa=1\underset{a\to 0}{\mathop{\lim }}\,\dfrac{\sin a}{a}=1. Then separate the terms and use lima0tanaa=1\underset{a\to 0}{\mathop{\lim }}\,\dfrac{\tan a}{a}=1 and then substitute the limit equal to 0 to find the value of a.

Complete step-by-step answer:
Here, we have to find the value of ‘a’ if limx0((an)nxtanx)sinnxx2\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\left( \left( a-n \right)nx-\tan x \right)\sin nx}{{{x}^{2}}} is equal to 0, where n\in R-\left\\{ 0 \right\\}. Let us consider the limit given in the question.
L=limx0((an)nxtanx)sinnxx2L=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\left( \left( a-n \right)nx-\tan x \right)\sin nx}{{{x}^{2}}}
By multiplying both numerator and denominator by nx in RHS of the above equation, we get,
L=limx0((an)nxtanx)sinnx.(nx)x2.(nx)L=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\left( \left( a-n \right)nx-\tan x \right)\sin nx.\left( nx \right)}{{{x}^{2}}.\left( nx \right)}
We can also write the above equation as,
L=limx0((an)nxtanx).(nx)x2.(sinnxnx)L=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\left( \left( a-n \right)nx-\tan x \right).\left( nx \right)}{{{x}^{2}}}.\left( \dfrac{\sin nx}{nx} \right)
We know that lima0sinaa=1\underset{a\to 0}{\mathop{\lim }}\,\dfrac{\sin a}{a}=1. By using this in the above equation and canceling the like terms, we get,
L=limx0((an)nxtanx).nx.1L=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{\left( \left( a-n \right)nx-\tan x \right).n}{x}.1
We can also write the above equation as
L=limx0(((an).n2xx)(tanxx)).nL=\underset{x\to 0}{\mathop{\lim }}\,\left( \left( \dfrac{\left( a-n \right).{n}^{2}x}{x} \right)-\left( \dfrac{\tan x}{x} \right) \right).n
L=limx0 n2.(an)limx0 n.(tanxx)\Rightarrow L=\underset{x\to 0}{\mathop{\lim }}\,\text{ }{{n}^{2}}.\left( a-n \right)-\underset{x\to 0}{\mathop{\lim }}\,\text{ }n.\left( \dfrac{\tan x}{x} \right)
We know that lima0tanaa=1\underset{a\to 0}{\mathop{\lim }}\,\dfrac{\tan a}{a}=1. By using this in the above equation, we get,
L=n2(an)nL={{n}^{2}}\left( a-n \right)-n
We are given that L = 0, So by substituting it in the above equation, we get,
n2(an)n=0{{n}^{2}}\left( a-n \right)-n=0
n2(an)=n\Rightarrow {{n}^{2}}\left( a-n \right)=n
(an)=nn2\left( a-n \right)=\dfrac{n}{{{n}^{2}}}
an=1n\Rightarrow a-n=\dfrac{1}{n}
So, we get,
a=n+1na=n+\dfrac{1}{n}
**Hence, option (d) is the right answer.
**
Note: Students must remember the formula lima0sinaa=1\underset{a\to 0}{\mathop{\lim }}\,\dfrac{\sin a}{a}=1 and lima0tanaa=1\underset{a\to 0}{\mathop{\lim }}\,\dfrac{\tan a}{a}=1 as they are very useful while solving the question involving limits. Also, first of all, evaluate the whole limit and eliminate the x and then only substitute its value.