Solveeit Logo

Question

Question: If the value of trigonometric expression \(\sin \left( {A + B} \right) = 1\)and \(\sin \left( {A - B...

If the value of trigonometric expression sin(A+B)=1\sin \left( {A + B} \right) = 1and sin(AB)=13\sin \left( {A - B} \right) = \dfrac{1}{{\sqrt 3 }}, find the value of tanA+tanB\tan A + \tan B.

Explanation

Solution

Hint – In this question take the sin part of the given trigonometric relations to the right hand side such that inverse trigonometric relations can be formed, we will get two equations involving A and B. Then take cos both sides so as to evaluate the expression sinAcosB+cosAsinBcosAcosB\dfrac{{\sin A\cos B + \cos A\sin B}}{{\cos A\cos B}} as tanA+tanB=sinAcosB+cosAsinBcosAcosB\tan A + \tan B = \dfrac{{\sin A\cos B + \cos A\sin B}}{{\cos A\cos B}} after simple simplification.

Complete step-by-step answer:
Given data:
sin(A+B)=1\sin \left( {A + B} \right) = 1 and sin(AB)=13\sin \left( {A - B} \right) = \dfrac{1}{{\sqrt 3 }}
So these equations is written as
A+B=sin11\Rightarrow A + B = {\sin ^{ - 1}}1
A+B=900\Rightarrow A + B = {90^0}, [sin11=900]\left[ {\because {{\sin }^{ - 1}}1 = {{90}^0}} \right]
Now take cos on both sides we have,
cos(A+B)=cos900=0\Rightarrow \cos \left( {A + B} \right) = \cos {90^0} = 0....................... (1), [cos900=0]\left[ {\because \cos {{90}^0} = 0} \right]
And AB=sin113A - B = {\sin ^{ - 1}}\dfrac{1}{{\sqrt 3 }}.............. (2)
Now take cos on both sides in equation (2) we have,
cos(AB)=cos(sin113)\Rightarrow \cos \left( {A - B} \right) = \cos \left( {{{\sin }^{ - 1}}\dfrac{1}{{\sqrt 3 }}} \right)
Now let x=sin113x = {\sin ^{ - 1}}\dfrac{1}{{\sqrt 3 }}
cos(AB)=cos(x)\Rightarrow \cos \left( {A - B} \right) = \cos \left( x \right)........................ (3)
sinx=13\Rightarrow \sin x = \dfrac{1}{{\sqrt 3 }}
As we know sin is the ratio of perpendicular to hypotenuse,
Therefore perpendicular = 1 and hypotenuse = 3\sqrt 3
So apply Pythagoras theorem and calculate the base,
(Hypotenuse)2=(perpendicular)2+(base)2\Rightarrow {\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{perpendicular}}} \right)^2} + {\left( {{\text{base}}} \right)^2}
(3)2=(1)2+(base)2\Rightarrow {\left( {\sqrt 3 } \right)^2} = {\left( 1 \right)^2} + {\left( {{\text{base}}} \right)^2}
(base)2=31=2\Rightarrow {\left( {{\text{base}}} \right)^2} = 3 - 1 = 2
Base=2\Rightarrow {\text{Base}} = \sqrt 2
So as we know that cos is the ratio of base to hypotenuse,
cosx=23\Rightarrow \cos x = \dfrac{{\sqrt 2 }}{{\sqrt 3 }}
x=cos123\Rightarrow x = {\cos ^{ - 1}}\sqrt {\dfrac{2}{3}}
Now from equation (3) we have,
cos(AB)=cos(cos123)\Rightarrow \cos \left( {A - B} \right) = \cos \left( {{{\cos }^{ - 1}}\sqrt {\dfrac{2}{3}} } \right)
cos(AB)=23\Rightarrow \cos \left( {A - B} \right) = \sqrt {\dfrac{2}{3}}....................... (4)
Now add equation (1) and (4) we have,
cos(A+B)+cos(AB)=0+23\Rightarrow \cos \left( {A + B} \right) + \cos \left( {A - B} \right) = 0 + \sqrt {\dfrac{2}{3}}
Now as we know that cos(A+B)=cosAcosBsinAsinB\cos \left( {A + B} \right) = \cos A\cos B - \sin A\sin B and cos(AB)=cosAcosB+sinAsinB\cos \left( {A - B} \right) = \cos A\cos B + \sin A\sin B so use this property in above equation we have,
cosAcosBsinAsinB+cosAcosB+sinAsinB=0+23\Rightarrow \cos A\cos B - \sin A\sin B + \cos A\cos B + \sin A\sin B = 0 + \sqrt {\dfrac{2}{3}}
2cosAcosB=23\Rightarrow 2\cos A\cos B = \sqrt {\dfrac{2}{3}}
cosAcosB=1223\Rightarrow \cos A\cos B = \dfrac{1}{2}\sqrt {\dfrac{2}{3}}......................... (5)
Now we have to find the value of tanA+tanB\tan A + \tan B
tanA+tanB=sinAcosA+sinBcosB=sinAcosB+cosAsinBcosAcosB\Rightarrow \tan A + \tan B = \dfrac{{\sin A}}{{\cos A}} + \dfrac{{\sin B}}{{\cos B}} = \dfrac{{\sin A\cos B + \cos A\sin B}}{{\cos A\cos B}}
Now as we know that sinAcosB+cosAsinB=sin(A+B)\sin A\cos B + \cos A\sin B = \sin \left( {A + B} \right)
tanA+tanB=sinAcosB+cosAsinBcosAcosB=sin(A+B)cosAcosB\Rightarrow \tan A + \tan B = \dfrac{{\sin A\cos B + \cos A\sin B}}{{\cos A\cos B}} = \dfrac{{\sin \left( {A + B} \right)}}{{\cos A\cos B}}
Now substitute the values in this equation we have,
tanA+tanB=sin(A+B)cosAcosB=11223=232\Rightarrow \tan A + \tan B = \dfrac{{\sin \left( {A + B} \right)}}{{\cos A\cos B}} = \dfrac{1}{{\dfrac{1}{2}\sqrt {\dfrac{2}{3}} }} = \dfrac{{2\sqrt 3 }}{{\sqrt 2 }}
Now multiply and divide by 2\sqrt 2 we have,
tanA+tanB=232×22=262=6\Rightarrow \tan A + \tan B = \dfrac{{2\sqrt 3 }}{{\sqrt 2 }} \times \dfrac{{\sqrt 2 }}{{\sqrt 2 }} = \dfrac{{2\sqrt 6 }}{2} = \sqrt 6
So this is the required answer.

Note – It is always advisable to remember basic trigonometric identities while solving problems of this type. One trigonometric ratio can easily be converted into another trigonometric ratio by using the phenomena of a right angled triangle, the same thus applies to inverse trigonometric conversions. The basics of tan that is tanθ=sinθcosθ\tan \theta = \dfrac{{\sin \theta }}{{\cos \theta }} and cot that is cotθ=cosθsinθ\cot \theta = \dfrac{{\cos \theta }}{{\sin \theta }} is very helpful for trigonometric problems.