Solveeit Logo

Question

Question: If the value of trigonometric expression \(\cos \left( {{{\tan }^{ - 1}}x + {{\cot }^{ - 1}}\sqrt 3 ...

If the value of trigonometric expression cos(tan1x+cot13)=0\cos \left( {{{\tan }^{ - 1}}x + {{\cot }^{ - 1}}\sqrt 3 } \right) = 0, find the value of x.

Explanation

Solution

Hint – In this question first convert the inner cot13{\cot ^{ - 1}}\sqrt 3 in terms of tan13{\tan ^{ - 1}}\sqrt 3 using the identity that tan1x+cot1x=π2{\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \dfrac{\pi }{2}. The use identity that cos(π2+θ)=sinθ\cos \left( {\dfrac{\pi }{2} + \theta } \right) = - \sin \theta . Since sin10{\sin ^{ - 1}}0 is zero hence use this to get the value of x.

Complete step-by-step answer:
As we know that
tan1x+cot1x=π2{\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \dfrac{\pi }{2}
cot1x=π2tan1x\Rightarrow {\cot ^{ - 1}}x = \dfrac{\pi }{2} - {\tan ^{ - 1}}x
So use this property in given equation we have,
cos(tan1x+π2tan13)=0\Rightarrow \cos \left( {{{\tan }^{ - 1}}x + \dfrac{\pi }{2} - {{\tan }^{ - 1}}\sqrt 3 } \right) = 0
cos(π2+tan1xtan13)=0\Rightarrow \cos \left( {\dfrac{\pi }{2} + {{\tan }^{ - 1}}x - {{\tan }^{ - 1}}\sqrt 3 } \right) = 0
Now as we know that cos(π2+θ)=sinθ\cos \left( {\dfrac{\pi }{2} + \theta } \right) = - \sin \theta so use this property in above equation we have,
cos(π2+tan1xtan13)=sin(tan1xtan13)=0\Rightarrow \cos \left( {\dfrac{\pi }{2} + {{\tan }^{ - 1}}x - {{\tan }^{ - 1}}\sqrt 3 } \right) = - \sin \left( {{{\tan }^{ - 1}}x - {{\tan }^{ - 1}}\sqrt 3 } \right) = 0
sin(tan1xtan13)=0\Rightarrow \sin \left( {{{\tan }^{ - 1}}x - {{\tan }^{ - 1}}\sqrt 3 } \right) = 0
tan1xtan13=sin10\Rightarrow {\tan ^{ - 1}}x - {\tan ^{ - 1}}\sqrt 3 = {\sin ^{ - 1}}0
Now as we know that the value of sin10{\sin ^{ - 1}}0 is zero.
So substitute this value in above equation we have,
tan1xtan13=0\Rightarrow {\tan ^{ - 1}}x - {\tan ^{ - 1}}\sqrt 3 = 0
tan1x=tan13\Rightarrow {\tan ^{ - 1}}x = {\tan ^{ - 1}}\sqrt 3
Now on comparing we have,
x=3\Rightarrow x = \sqrt 3
So this is the required value of x.

Note – It is always advisable to remember the direct trigonometry and trigonometric inverse identities some of them are being mentioned above as they help saving a lot of time. Some other important identities involve sin1x+cos1x=π2{\sin ^{ - 1}}x + {\cos ^{ - 1}}x = \dfrac{\pi }{2}, sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1, 1+tan2x=sec2x1 + {\tan ^2}x = {\sec ^2}x.