Solveeit Logo

Question

Mathematics Question on Definite Integral

If the value of the integral

π2π2(x2cosx1+πx+1+sin2x1+esinx2023)dx=π4(π+a)2,\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \frac{x^2 \cos x}{1 + \pi^x} + \frac{1 + \sin^2 x}{1 + e^{\sin^x 2023}} \right) dx = \frac{\pi}{4} (\pi + a) - 2,

then the value of aa is:

A

2

B

32-\frac{3}{2}

C

3

D

32\frac{3}{2}

Answer

3

Explanation

Solution

Step 1: Set Up the Integral II

I=π2π2(x2cosx1+πx+1+sin2x1+esin2023x)dxI = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \frac{x^2 \cos x}{1 + \pi^x} + \frac{1 + \sin^2 x}{1 + e^{\sin^{2023} x}} \right) dx

Step 2: Use Symmetry to Simplify

Notice that the integrand has symmetry properties, allowing us to split the integral and add:

I=π2π2(x2cosx1+πx+1+sin2x1+esin2023(x))dxI = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( \frac{x^2 \cos x}{1 + \pi^x} + \frac{1 + \sin^2 x}{1 + e^{\sin^{2023}(-x)}} \right) dx

Step 3: Combine Integrals

Adding the two integrals results in:

2I=π2π2(x2cosx+1+sin2x)dx2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left( x^2 \cos x + 1 + \sin^2 x \right) dx

Step 4: Evaluate the Integral

Solving this integral gives:

I=π24+3π42I = \frac{\pi^2}{4} + \frac{3\pi}{4} - 2

Step 5: Determine aa

From the given equation, equate terms to find a=3a = 3.

So, the correct answer is: a=3a = 3