Question
Mathematics Question on Definite Integral
If the value of the integral
∫−2π2π(1+πxx2cosx+1+esinx20231+sin2x)dx=4π(π+a)−2,
then the value of a is:
A
2
B
−23
C
3
D
23
Answer
3
Explanation
Solution
Step 1: Set Up the Integral I
I=∫−2π2π(1+πxx2cosx+1+esin2023x1+sin2x)dx
Step 2: Use Symmetry to Simplify
Notice that the integrand has symmetry properties, allowing us to split the integral and add:
I=∫−2π2π(1+πxx2cosx+1+esin2023(−x)1+sin2x)dx
Step 3: Combine Integrals
Adding the two integrals results in:
2I=∫−2π2π(x2cosx+1+sin2x)dx
Step 4: Evaluate the Integral
Solving this integral gives:
I=4π2+43π−2
Step 5: Determine a
From the given equation, equate terms to find a=3.
So, the correct answer is: a=3