Question
Question: If the value of the determinant \(\left| \begin{matrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{mat...
If the value of the determinant a111b111c is positive, then
A
abc> 1
B
abc > -8
C
abc < -8
D
abc > -2
Answer
abc > -8
Explanation
Solution
Let ∆ = a111b111c =abc+2−a−b−c>0
or abc+2>a+b+c …… (1)
∴A.M.> G.M.
⇒ 3a+b+c(abc)1/3
∴a+b+c > 3 (abc)1/3 …… (II)
From (1) and (2) then abc + 2>3 (abc)1/3
let (abc)1/3=x then x3+2>3x
⇒ (x−1)2(x+2)>0
∴x+2 > 0
⇒ x> -2 ; abc > - 8