Solveeit Logo

Question

Question: If the value of the determinant \(\left| \begin{matrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{mat...

If the value of the determinant a111b111c\left| \begin{matrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{matrix} \right| is positive, then

A

abc> 1

B

abc > -8

C

abc < -8

D

abc > -2

Answer

abc > -8

Explanation

Solution

Let ∆ = a111b111c\left| \begin{matrix} a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c \end{matrix} \right| =abc+2abc>0= abc + 2 - a - b - c > 0

or abc+2>a+b+cabc + 2 > a + b + c …… (1)

∴A.M.> G.M.

a+b+c3(abc)1/3\frac{a + b + c}{3}(abc)^{1/3}

∴a+b+c > 3 (abc)1/3(abc)^{1/3} …… (II)

From (1) and (2) then abc + 2>3 (abc)1/3(abc)^{1/3}

let (abc)1/3(abc)^{1/3}=x then x3+2>3xx^{3} + 2 > 3x

(x1)2(x+2)>0(x - 1)^{2}(x + 2) > 0

∴x+2 > 0

⇒ x> -2 ; abc > - 8