Solveeit Logo

Question

Question: If the value of the determinant \(\left| \begin{matrix} a & 1 & 1 \\\ 1 & b & 1 \\\ 1...

If the value of the determinant a11 1b1 11c \left| \begin{matrix} a & 1 & 1 \\\ 1 & b & 1 \\\ 1 & 1 & c \\\ \end{matrix} \right| is positive, then (a,b,c>0)\left( a,b,c>0 \right)
A) abc>1abc>1
B) abc>8abc>-8
C) abc<8abc < -8

Explanation

Solution

Here in this question we have been given that the value of the determinant a11 1b1 11c \left| \begin{matrix} a & 1 & 1 \\\ 1 & b & 1 \\\ 1 & 1 & c \\\ \end{matrix} \right| is positive. We will find the determinant and then we will simplify it using the simple logic given as that for any three numbers a,b,ca,b,c the expression a+b+c2(abc)123abcab+bc+ca\dfrac{a+b+c}{2}\ge {{\left( abc \right)}^{\dfrac{1}{2}}}\ge \dfrac{3abc}{ab+bc+ca} is valid.

Complete step by step solution:
Now considering from the question we have been asked to find the expression for abcabc when the value of the determinant a11 1b1 11c \left| \begin{matrix} a & 1 & 1 \\\ 1 & b & 1 \\\ 1 & 1 & c \\\ \end{matrix} \right| is positive.
From the basic concepts of progressions we know that for nn numbers Arithmetic mean  Geometric mean  Harmonic mean\text{Arithmetic mean }\ge \text{ Geometric mean }\ge \text{ Harmonic mean} . The arithmetic mean of nn numbers is given as a1+a2+.........+ann\dfrac{{{a}_{1}}+{{a}_{2}}+.........+{{a}_{n}}}{n} , geometric mean is given as (a1a2......an)1n{{\left( {{a}_{1}}{{a}_{2}}......{{a}_{n}} \right)}^{\dfrac{1}{n}}} and harmonic mean is given as n1a1+1a2+......+1an\dfrac{n}{\dfrac{1}{{{a}_{1}}}+\dfrac{1}{{{a}_{2}}}+......+\dfrac{1}{{{a}_{n}}}} .
Now if we consider a,b,ca,b,c then we will have a+b+c3(abc)13\dfrac{a+b+c}{3}\ge {{\left( abc \right)}^{\dfrac{1}{3}}} .
Now we will compute the determinant of the matrix a11 1b1 11c \left| \begin{matrix} a & 1 & 1 \\\ 1 & b & 1 \\\ 1 & 1 & c \\\ \end{matrix} \right| is given as ab1 1c 111 c1 +11b 11 =a(bc1)(c1)+(1b) abcabc+2 \begin{aligned} & \Rightarrow a\left| \begin{matrix} b & 1 \\\ 1 & c \\\ \end{matrix} \right|-1\left| \begin{matrix} 1 & 1 \\\ c & 1 \\\ \end{matrix} \right|+1\left| \begin{matrix} 1 & b \\\ 1 & 1 \\\ \end{matrix} \right|=a\left( bc-1 \right)-\left( c-1 \right)+\left( 1-b \right) \\\ & \Rightarrow abc-a-b-c+2 \\\ \end{aligned}
Now from the question we know that the determinant is positive so abcabc+2>0abc-a-b-c+2>0 .
Now we can further simplify it using the relation a+b+c3(abc)13\dfrac{a+b+c}{3}\ge {{\left( abc \right)}^{\dfrac{1}{3}}} and write it as abc+2(a+b+c)>0 abc+2>(a+b+c) abc+2>3(abc)13 \begin{aligned} & \Rightarrow abc+2-\left( a+b+c \right)>0 \\\ & \Rightarrow abc+2>\left( a+b+c \right) \\\ & \Rightarrow abc+2>3{{\left( abc \right)}^{\dfrac{1}{3}}} \\\ \end{aligned}
Let us assume that (abc)13=x{{\left( abc \right)}^{\dfrac{1}{3}}}=x then we can write it as
x3+2>3x x33x+2>0 (x1)2(x+2)>0 \begin{aligned} & {{x}^{3}}+2>3x \\\ & \Rightarrow {{x}^{3}}-3x+2>0 \\\ & \Rightarrow {{\left( x-1 \right)}^{2}}\left( x+2 \right)>0 \\\ \end{aligned}
As (x1)2{{\left( x-1 \right)}^{2}} is always positive so if (x+2)>0\left( x+2 \right)>0 then the expression is valid so x>2(abc)13>2 abc>(2)3 abc>8 \begin{aligned} & x>-2\Rightarrow {{\left( abc \right)}^{\dfrac{1}{3}}}>-2 \\\ & \Rightarrow abc>{{\left( -2 \right)}^{3}} \\\ & \Rightarrow abc>-8 \\\ \end{aligned} .
Hence we can conclude that the value of the determinant a11 1b1 11c \left| \begin{matrix} a & 1 & 1 \\\ 1 & b & 1 \\\ 1 & 1 & c \\\ \end{matrix} \right| is positive, then abc>8abc>-8 .

So, the correct answer is “Option B”.

Note: While answering questions of this type we should be sure with our algebraic concepts. This question can be answered easily and in a short span of time and very few mistakes are possible in it. Similarly we have another relation between arithmetic, geometric and harmonic means which is mathematically given as Geometric Mean = Arithmetic Mean×Harmonic Mean\text{Geometric Mean = }\sqrt{\text{Arithmetic Mean}\times \text{Harmonic Mean}}.