Solveeit Logo

Question

Question: If the value of \[\text{sec4A=cosec(A-2}{{\text{0}}^{\circ }})\] where 4A is an acute angle then, fi...

If the value of sec4A=cosec(A-20)\text{sec4A=cosec(A-2}{{\text{0}}^{\circ }}) where 4A is an acute angle then, find the value of A.

Explanation

Solution

To solve this question, we will use a basic trigonometric identity, which is given as below; secθ=cosec(90θ)\text{sec}\theta \text{=cosec}\left( {{90}^{\circ }}-\theta \right) Where θ\theta is angle. This relation comprises relation between secθ and cosecθ\text{sec}\theta \text{ and cosec}\theta We will apply this to the LHS of the given equation and then compare both sides to get the value of A.

Complete step-by-step solution:
Given that sec4A=cosec(A-20)\text{sec4A=cosec(A-2}{{\text{0}}^{\circ }})
Here, 4A is an acute angle.
We will use a basic trigonometric identity to solve this question. The trigonometric identity is
secθ=cosec(90θ)\text{sec}\theta \text{=cosec}\left( {{90}^{\circ }}-\theta \right)
As we are given, sec4A=cosec(A-20)\text{sec4A=cosec(A-2}{{\text{0}}^{\circ }})
Here, using above identity in the left hand side, we get

& \text{sec4A=cosec(9}{{\text{0}}^{\circ }}-4\text{A}) \\\ & \Rightarrow \text{sec4A=cosec(9}{{\text{0}}^{\circ }}-4\text{A})=\text{cosec(A-2}{{\text{0}}^{\circ }}) \\\ \end{aligned}$$ Comparing both the sides, we get: $$\text{cosec(9}{{\text{0}}^{\circ }}-4\text{A})=\text{cosec(A-2}{{\text{0}}^{\circ }})$$ Now, as both sides has cosec, so we apply $\text{cose}{{\text{c}}^{\text{-1}}}$ on both sides, we get: $$\begin{aligned} & \text{cose}{{\text{c}}^{\text{-1}}}\left( \text{cosec(9}{{\text{0}}^{\circ }}-4\text{A}) \right)=\text{cose}{{\text{c}}^{\text{-1}}}\left( \text{cosec(A-2}{{\text{0}}^{\circ }}) \right) \\\ & \Rightarrow \text{9}{{\text{0}}^{\circ }}-4\text{A}=\text{A-2}{{\text{0}}^{\circ }} \\\ & \Rightarrow -4\text{A-A=-9}{{\text{0}}^{\circ }}-{{20}^{\circ }} \\\ & \Rightarrow +5\text{A=+11}{{\text{0}}^{\circ }} \\\ \end{aligned}$$ Dividing by 5, we get: $$\begin{aligned} & \text{A=}\dfrac{{{110}^{\circ }}}{5} \\\ & \text{A=22}^{\circ } \\\ \end{aligned}$$ So, we have value of $$\text{A=22}^{\circ } $$ **Therefore, value of $$\text{A=22}^{\circ } $$** **Note:** Another way to solve this question is using $$\text{sec}\theta \text{=}\dfrac{1}{\text{cos}\theta }\text{ and sin}\theta \dfrac{1}{\text{cosec}\theta }$$ trigonometric identity. We are given $$\text{sec4A=cosec(A-2}{{\text{0}}^{\circ }})$$ Applying identity we get $$\dfrac{1}{\text{cos4A}}=\dfrac{1}{\text{sin}\left( A-{{20}^{\circ }} \right)}\Rightarrow \text{cos4A=sin}\left( A-{{20}^{\circ }} \right)$$ Now, we will use trigonometric identity as $$\text{cos}\theta \text{=sin}\left( {{90}^{\circ }}-\theta \right)\Rightarrow \text{sin}\left( {{90}^{\circ }}-4\text{A} \right)=\text{sin}\left( \text{A-2}{{\text{0}}^{\circ }} \right)$$ Applying $\text{si}{{\text{n}}^{-1}}$ both sides, we get: $$\begin{aligned} & {{90}^{\circ }}-4\text{A=A-2}{{\text{0}}^{\circ }} \\\ & \Rightarrow 5A={{110}^{\circ }} \\\ & \Rightarrow A={{22}^{\circ }} \\\ \end{aligned}$$