Solveeit Logo

Question

Question: If the value of \({{\tan }^{-1}}x+2{{\cot }^{-1}}x=\dfrac{2\pi }{3}\), then the value of x is- A....

If the value of tan1x+2cot1x=2π3{{\tan }^{-1}}x+2{{\cot }^{-1}}x=\dfrac{2\pi }{3}, then the value of x is-
A. 2\sqrt{2}
B. 3
C. 3\sqrt{3}
D. 313+1\dfrac{\sqrt{3}-1}{\sqrt{3}+1}

Explanation

Solution

As we know from property of inverse trigonometric function we can write
cot1x=π2tan1x{{\cot }^{-1}}x=\dfrac{\pi }{2}-{{\tan }^{-1}}x .Use this information to solve the question.

Complete step-by-step answer:
Given equation is tan1x+2cot1x=2π3{{\tan }^{-1}}x+2{{\cot }^{-1}}x=\dfrac{2\pi }{3}
Now from property of inverse trigonometric function we can write
cot1x=π2tan1x{{\cot }^{-1}}x=\dfrac{\pi }{2}-{{\tan }^{-1}}x
On substituting value of cot1x{{\cot }^{-1}}x in given equation
tan1x+2cot1x=2π3\Rightarrow {{\tan }^{-1}}x+2{{\cot }^{-1}}x=\dfrac{2\pi }{3}
tan1x+2(π2tan1x)=2π3\Rightarrow {{\tan }^{-1}}x+2\left( \dfrac{\pi }{2}-{{\tan }^{-1}}x \right)=\dfrac{2\pi }{3}
tan1x+2×π22tan1x=2π3\Rightarrow {{\tan }^{-1}}x+2\times \dfrac{\pi }{2}-2{{\tan }^{-1}}x=\dfrac{2\pi }{3}
πtan1x=2π3\Rightarrow \pi -{{\tan }^{-1}}x=\dfrac{2\pi }{3}
.tan1x=π2π3\Rightarrow {{\tan }^{-1}}x=\pi -\dfrac{2\pi }{3}
tan1x=3π2π3\Rightarrow {{\tan }^{-1}}x=\dfrac{3\pi -2\pi }{3}
tan1x=π3\Rightarrow {{\tan }^{-1}}x=\dfrac{\pi }{3}
x=tan(π3)\Rightarrow x=\tan \left( \dfrac{\pi }{3} \right) \left\\{ \begin{aligned} & If\,{{\tan }^{-1}}(x)=\theta \\\ & \Rightarrow x=\tan (\theta ) \\\ \end{aligned} \right\\}
x=3\Rightarrow x=\sqrt{3}
Hence option C is correct.

Note: In the above question we need to remember that we will change only one inverse trigonometric function in terms to another.
As we put value of cot1x{{\cot }^{-1}}xin above equation in terms of tan1x{{\tan }^{-1}}xand solve equation in terms of tan1x{{\tan }^{-1}}x. Similarly we can also write value of tan1x{{\tan }^{-1}}x in terms of cot1x{{\cot }^{-1}}x and then solve equation in terms of cot1x{{\cot }^{-1}}x.