Solveeit Logo

Question

Question: If the value of \(\sqrt 2 \cos A = \cos B + {\cos ^3}B\) and \(\sqrt 2 \sin A = \sin B - {\sin ^3}B\...

If the value of 2cosA=cosB+cos3B\sqrt 2 \cos A = \cos B + {\cos ^3}B and 2sinA=sinBsin3B\sqrt 2 \sin A = \sin B - {\sin ^3}B. Then find the value of sin(AB)\left| {\sin \left( {A - B} \right)} \right|.

Explanation

Solution

Hint – In this questions we have been given two equations and we need to find the value ofsin(AB)\left| {\sin \left( {A - B} \right)} \right|. So divide the two given questions and then using trigonometric identities solve the right hand side part. Since we have to tell the value of a quantity in modulus so after obtaining the value take modulus both the sides. This will help get the right answer.

“Complete step-by-step answer:”
Given equation is
2cosA=cosB+cos3B\sqrt 2 \cos A = \cos B + {\cos ^3}B…………………….. (1)
2sinA=sinBsin3B\sqrt 2 \sin A = \sin B - {\sin ^3}B……………………… (2)
Now we have to find out the value of sin(AB)\left| {\sin \left( {A - B} \right)} \right|
So, divide equation (2) from equation (1) we have,
2sinA2cosA=sinBsin3BcosB+cos3B\dfrac{{\sqrt 2 \sin A}}{{\sqrt 2 \cos A}} = \dfrac{{\sin B - {{\sin }^3}B}}{{\cos B + {{\cos }^3}B}}
Now simplify the above equation we have,
sinAcosA=sinB(1sin2B)cosB(1+cos2B)\dfrac{{\sin A}}{{\cos A}} = \dfrac{{\sin B\left( {1 - {{\sin }^2}B} \right)}}{{\cos B\left( {1 + {{\cos }^2}B} \right)}}
Now as we know (1sin2θ=cos2θ)\left( {1 - {{\sin }^2}\theta = {{\cos }^2}\theta } \right) so, use this property in above equation we have,
sinAcosA=sinBcos2BcosB×(1+cos2B)=sinBcosB1+cos2B\dfrac{{\sin A}}{{\cos A}} = \dfrac{{\sin B{{\cos }^2}B}}{{\cos B \times \left( {1 + {{\cos }^2}B} \right)}} = \dfrac{{\sin B\cos B}}{{1 + {{\cos }^2}B}}
sinA(1+cos2B)=cosAcosBsinB\Rightarrow \sin A\left( {1 + {{\cos }^2}B} \right) = \cos A\cos B\sin B
sinA=cosAcosBsinBsinAcos2B\Rightarrow \sin A = \cos A\cos B\sin B - \sin A{\cos ^2}B
sinA=cosB(cosAsinBsinAcosB)\Rightarrow \sin A = \cos B\left( {\cos A\sin B - \sin A\cos B} \right)
Now as we know cosAsinBsinAcosB=sin(BA)=sin(AB)\cos A\sin B - \sin A\cos B = \sin \left( {B - A} \right) = - \sin \left( {A - B} \right) so, use this property in above equation we have,
sinA=cosB(sin(AB))\Rightarrow \sin A = \cos B\left( { - \sin \left( {A - B} \right)} \right)
sin(AB)=sinAcosB\Rightarrow \sin \left( {A - B} \right) = - \dfrac{{\sin A}}{{\cos B}}
Now apply the modulus in above equation we have,
sin(AB)=sinAcosB\Rightarrow \left| {\sin \left( {A - B} \right)} \right| = \left| { - \dfrac{{\sin A}}{{\cos B}}} \right|
Now as we know modulus of any negative quantity is positive
sin(AB)=sinAcosB\Rightarrow \left| {\sin \left( {A - B} \right)} \right| = \dfrac{{\sin A}}{{\cos B}}
So, this is the required answer.

Note – Whenever we face such types of problems the key concept is to have a good gist of the basic trigonometric identities some of them are being mentioned while performing the solution. Questions of such type are mostly formula based so having a good understanding of trigonometric identities helps getting on the right track to reach the solution.