Solveeit Logo

Question

Question: If the value of \[\sec \theta =\dfrac{5}{4}\] , find the value of \[\dfrac{\sin \theta -2\cos \theta...

If the value of secθ=54\sec \theta =\dfrac{5}{4} , find the value of sinθ2cosθtanθcotθ\dfrac{\sin \theta -2\cos \theta }{\tan \theta -\cot \theta } .

Explanation

Solution

Hint: In the given expression, we don’t have any secθ\sec \theta term. For finding the value of the given expression, we have to find the values of sinθ\sin \theta , cosθ\cos \theta , tanθ\tan \theta , and cotθ\cot \theta . Value of cosθ\cos \theta can be calculated by using the value of secθ\sec \theta . Putting the value of cosθ\cos \theta in the identity, sin2θ+cos2=1{{\sin }^{2}}\theta +{{\cos }^{2}}=1, sinθ\sin \theta can be calculated. Then, using the value of cosθ\cos \theta and sinθ\sin \theta , tanθ\tan \theta and cotθ\cot \theta can be calculated. Now, put the values of sinθ\sin \theta , cosθ\cos \theta , tanθ\tan \theta , and cotθ\cot \theta in the given expression and solve it further.

Complete step-by-step answer:

According to the question, it is given that secθ=54\sec \theta =\dfrac{5}{4}………………(1)

We know the relation between secθ\sec \theta and cosθ\cos \theta .

secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta }

cosθ=1secθ\Rightarrow \cos \theta =\dfrac{1}{\sec \theta }……………(2)

Putting the value of secθ\sec \theta in equation (2), we get

cosθ=154\cos \theta =\dfrac{1}{\dfrac{5}{4}}

cosθ=45\Rightarrow \cos \theta =\dfrac{4}{5}

We also have the identity, sin2θ+cos2=1{{\sin }^{2}}\theta +{{\cos }^{2}}=1 .

Taking cos2θ{{\cos }^{2}}\theta to RHS, we get sin2θ=1cos2θ{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta ………………(3)

Putting the value of cosθ\cos \theta in equation (3), we get

sin2θ=1cos2θ{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta

sin2θ=11625\Rightarrow {{\sin }^{2}}\theta =1-\dfrac{16}{25}

sin2θ=251625\Rightarrow {{\sin }^{2}}\theta =\dfrac{25-16}{25}

sin2θ=925\Rightarrow {{\sin }^{2}}\theta =\dfrac{9}{25}…………….(4)

Taking root in both LHS and RHS of the equation (4), we get

sinθ=35\sin \theta =\dfrac{3}{5}…………………….(5)

We also know that, tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta }………………(6)

Using the values of sinθ\sin \theta and cosθ\cos \theta in equation (6), we get

tanθ=3545\tan \theta =\dfrac{\dfrac{3}{5}}{\dfrac{4}{5}}

tanθ=34\Rightarrow \tan \theta =\dfrac{3}{4} ………….(7)

We also know the relation between tanθ\tan \theta and cotθ\cot \theta ,

cotθ=1tanθ\cot \theta =\dfrac{1}{\tan \theta }

cotθ=134\Rightarrow \cot \theta =\dfrac{1}{\dfrac{3}{4}}

cotθ=43\Rightarrow \cot \theta =\dfrac{4}{3}………..(8)

Now, we have the values of sinθ\sin \theta , cosθ\cos \theta , tanθ\tan \theta , and cotθ\cot \theta .

Putting these values in the expression, sinθ2cosθtanθcotθ\dfrac{\sin \theta -2\cos \theta }{\tan \theta -\cot \theta } we get,

sinθ2cosθtanθcotθ\dfrac{\sin \theta -2\cos \theta }{\tan \theta -\cot \theta }

=352.453443=\dfrac{\dfrac{3}{5}-2.\dfrac{4}{5}}{\dfrac{3}{4}-\dfrac{4}{3}}

=38591612=\dfrac{\dfrac{3-8}{5}}{\dfrac{9-16}{12}}

=55712=\dfrac{\dfrac{-5}{5}}{\dfrac{-7}{12}}

=1712=\dfrac{-1}{\dfrac{-7}{12}}

=127=\dfrac{12}{7}

Therefore, sinθ2cosθtanθcotθ=127\dfrac{\sin \theta -2\cos \theta }{\tan \theta -\cot \theta }=\dfrac{12}{7} .

Note: This question can also be solved using Pythagoras theorem.

secθ=54\sec \theta =\dfrac{5}{4}

Using Pythagoras theorem, we can find height.

Height= (hypotenuse)2(base)2\sqrt{{{\left( hypotenuse \right)}^{2}}-{{\left( base \right)}^{2}}}

=(5)2(4)2=\sqrt{{{\left( 5 \right)}^{2}}-{{\left( 4 \right)}^{2}}}

=2516=\sqrt{25-16}

=9=\sqrt{9}

=3=3

sinθ=heighthypotenuse\sin \theta =\dfrac{height}{hypotenuse}

sinθ=35\sin \theta =\dfrac{3}{5}

cosθ=basehypotenuse\cos \theta =\dfrac{base}{hypotenuse}

cosθ=45\cos \theta =\dfrac{4}{5}

tanθ=heightbase\tan \theta =\dfrac{height}{base}

tanθ=34\tan \theta =\dfrac{3}{4}

cotθ=baseheight\cot \theta =\dfrac{base}{height}

cotθ=43\cot \theta =\dfrac{4}{3}

Now, we have the values of sinθ\sin \theta , cosθ\cos \theta , tanθ\tan \theta , and cotθ\cot \theta .Put these values in the expression, sinθ2cosθtanθcotθ\dfrac{\sin \theta -2\cos \theta }{\tan \theta -\cot \theta } and solve it further.