Solveeit Logo

Question

Question: If the value of sec θ + tan θ is p then find the value of cosec θ....

If the value of sec θ + tan θ is p then find the value of cosec θ.

Explanation

Solution

Hint: Use the formulas like
secθ=1cosθ tanθ=sinθcosθ \begin{aligned} & \sec \theta =\dfrac{1}{\cos \theta } \\\ & \text{tan}\theta =\dfrac{\sin \theta }{\cos \theta } \\\ \end{aligned}

Complete step-by-step answer:
Convert the given equation in sin θ and cos θ.
Then convert cos θ into sin θ using the formula
cos2θ+sin2θ=1{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1

Then a quadratic equation in sin θ will form. Use the quadratic formula to find the value of sin θ. For a quadratic equation of the form
ax2+bx+c=0a{{x}^{2}}+bx+c=0

Roots are given by
x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}

Then convert sin θ into cosec θ using the given below formula
cosecθ=1sinθ\text{cosec}\theta =\dfrac{1}{\sin \theta }

We know that
secθ=1cosθ(i) tanθ=sinθcosθ(ii) \begin{aligned} & \sec \theta =\dfrac{1}{\cos \theta }\,\,\,\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(i)} \\\ & \text{tan}\theta =\dfrac{\sin \theta }{\cos \theta }\,\,\,\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(ii)} \\\ \end{aligned}

Using the equation (i) and equation (ii) and converting the given equation into sin θ and cos θ as:
secθ+tanθ=p 1cosθ+sinθcosθ=p \begin{aligned} & \,\,\,\,\,\,\,\sec \theta +\tan \theta =p \\\ & \Rightarrow \dfrac{1}{\cos \theta }+\dfrac{\sin \theta }{\cos \theta }=p \\\ \end{aligned}
1+sinθcosθ=p\Rightarrow \dfrac{1+\sin \theta }{\cos \theta }=p
Multiplying cos θ on both side we get
1+sinθcosθcosθ=pcosθ 1+sinθ=pcosθ \begin{aligned} & \,\,\,\,\,\,\dfrac{1+\sin \theta }{\cos \theta }\cos \theta =p\cos \theta \\\ & \Rightarrow 1+\sin \theta =p\cos \theta \\\ \end{aligned}

Squaring both sides we get
(1+sinθ)2=p2cos2θ 1+sin2θ+2sinθ=p2cos2θ(iii) \begin{aligned} & \,\,\,\,\,{{\left( 1+\sin \theta \right)}^{2}}={{p}^{2}}{{\cos }^{2}}\theta \\\ & \Rightarrow 1+{{\sin }^{2}}\theta +2\sin \theta ={{p}^{2}}{{\cos }^{2}}\theta \,\,\,\,\,\,\,\,\,\cdot \cdot \cdot \text{(iii)} \\\ \end{aligned}

We know that
cos2θ+sin2θ=1 cos2θ=1sin2θ \begin{aligned} & \,\,\,\,\,\,\,{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 \\\ & \Rightarrow {{\cos }^{2}}\theta =1-{{\sin }^{2}}\theta \\\ \end{aligned}
Using the above equation in equation (iii) we get
1+sin2θ+2sinθ=p2(1sin2θ) (p2+1)sin2θ+2sinθ+1p2=0 \begin{aligned} & \,\,\,\,\,\,\,\,1+{{\sin }^{2}}\theta +2\sin \theta ={{p}^{2}}\left( 1-{{\sin }^{2}}\theta \right) \\\ & \Rightarrow \left( {{p}^{2}}+1 \right){{\sin }^{2}}\theta +2\sin \theta +1-{{p}^{2}}=0 \\\ \end{aligned}

Let sin θ = t. Then we have
(p2+1)t2+2t+1p2=0(iv)\left( {{p}^{2}}+1 \right){{t}^{2}}+2t+1-{{p}^{2}}=0\,\,\,\,\,\cdot \cdot \cdot \text{(iv)}

This is a quadratic equation in t. Now solving this equation to get the value of t in terms of p using the quadratic formula. The quadratic formula says that if the quadratic equation is
ax2+bx+c=0,a0(v)a{{x}^{2}}+bx+c=0\,\,,\,\,a\ne 0\,\,\,\,\cdot \cdot \cdot \text{(v)}

Then its roots are found by using the formula given below
x=b±b24ac2ax=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}

Since equation (iv) is a quadratic equation, comparing equation (iv) with equation (v) we get
a=p2+1,b=2,c=1p2a={{p}^{2}}+1\,\,,\,\,b=2\,\,,\,\,c=1-{{p}^{2}}

Using the quadratic formula to get the value of t
t=2±224(p2+1)(1p2)2(p2+1) t=2±44(1p4)2(p2+1) t=2±21(1p4)2(p2+1) t=1±p4p2+1 t=1±p2p2+1 t=1p2p2+1or t=p21p2+1 t=1or t=12p2+1 \begin{aligned} & t=\dfrac{-2\pm \sqrt{{{2}^{2}}-4\left( {{p}^{2}}+1 \right)\left( 1-{{p}^{2}} \right)}}{2\left( {{p}^{2}}+1 \right)} \\\ & \Rightarrow t=\dfrac{-2\pm \sqrt{4-4\left( 1-{{p}^{4}} \right)}}{2\left( {{p}^{2}}+1 \right)} \\\ & \Rightarrow t=\dfrac{-2\pm 2\sqrt{1-\left( 1-{{p}^{4}} \right)}}{2\left( {{p}^{2}}+1 \right)} \\\ & \Rightarrow t=\dfrac{-1\pm \sqrt{{{p}^{4}}}}{{{p}^{2}}+1} \\\ & \Rightarrow t=\dfrac{-1\pm {{p}^{2}}}{{{p}^{2}}+1} \\\ & \Rightarrow t=\dfrac{-1-{{p}^{2}}}{{{p}^{2}}+1}\,\,\,\,\,\,\,\,\,\,\,\,\,\text{or }t=\dfrac{{{p}^{2}}-1}{{{p}^{2}}+1}\, \\\ & \Rightarrow t=-1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\text{or }t=1-\dfrac{2}{{{p}^{2}}+1} \\\ \end{aligned}
If t=1t=-1 ,
sinθ=1 cosθ=1sin2θ=1(1)2=11=0 \begin{aligned} & \sin \theta =-1 \\\ & \Rightarrow \cos \theta =\sqrt{1-{{\sin }^{2}}\theta }=\sqrt{1-{{(-1)}^{2}}}=\sqrt{1-1}=0 \\\ \end{aligned}

Then secθ\sec \theta will not be defined.
So, t=11p2+1t=1-\dfrac{1}{{{p}^{2}}+1}
sinθ=12p2+1 sinθ=p21p2+1 \begin{aligned} & \Rightarrow \sin \theta =1-\dfrac{2}{{{p}^{2}}+1} \\\ & \Rightarrow \sin \theta =\dfrac{{{p}^{2}}-1}{{{p}^{2}}+1} \\\ \end{aligned}

Using the formula
cosecθ=1sinθ\text{cosec}\theta =\dfrac{1}{\sin \theta }
We get the value of cosecθ\text{cosec}\theta as
cosecθ=1sinθ cosecθ=p2+1p21 \begin{aligned} & \text{cosec}\theta =\dfrac{1}{\sin \theta } \\\ & \Rightarrow \text{cosec}\theta =\dfrac{{{p}^{2}}+1}{{{p}^{2}}-1} \\\ \end{aligned}

Hence the value of cosecθ\text{cosec}\theta is found to be p2+1p21\dfrac{{{p}^{2}}+1}{{{p}^{2}}-1}

Note: There is one alternate method which is quite easy and short. This method uses the formula
sec2θtan2θ=1 (secθtanθ)(secθ+tanθ)=1 \begin{aligned} & {{\sec }^{2}}\theta -{{\tan }^{2}}\theta =1 \\\ & \Rightarrow \left( \sec \theta -\tan \theta \right)\left( \sec \theta +\tan \theta \right)=1 \\\ \end{aligned}
So if secθ+tanθ=p\sec \theta +\tan \theta =pthen secθtanθ=1p\sec \theta -\tan \theta =\dfrac{1}{p}
Now subtracting second equation by first we get
2tanθ=p1p tanθ=p212p cotθ=2pp21 \begin{aligned} & 2\tan \theta =p-\dfrac{1}{p} \\\ & \Rightarrow \tan \theta =\dfrac{{{p}^{2}}-1}{2p} \\\ & \Rightarrow \cot \theta =\dfrac{2p}{{{p}^{2}}-1} \\\ \end{aligned}
We know that
cosec2θ=1+cot2θ cosec2θ=1+4p2(p21)2 cosec2θ=(p2+1)2(p21)2 cosecθ=p2+1p21 \begin{aligned} & \text{cose}{{\text{c}}^{2}}\theta =1+{{\cot }^{2}}\theta \\\ & \Rightarrow \text{cose}{{\text{c}}^{2}}\theta =1+\dfrac{4{{p}^{2}}}{{{\left( {{p}^{2}}-1 \right)}^{2}}} \\\ & \Rightarrow \text{cose}{{\text{c}}^{2}}\theta =\dfrac{{{\left( {{p}^{2}}+1 \right)}^{2}}}{{{\left( {{p}^{2}}-1 \right)}^{2}}} \\\ & \Rightarrow \text{cosec}\theta =\dfrac{{{p}^{2}}+1}{{{p}^{2}}-1} \\\ \end{aligned}