Question
Question: If the value of $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n (\lfloor \frac{2n}{k} \rfloor - 2\lflo...
If the value of limn→∞n1∑k=1n(⌊k2n⌋−2⌊kn⌋) can be expressed as (loga−b) where a and b are positive integers, then 4(a+b) is (where [.] denotes greatest integer function)

A
5/4
B
3/2
C
7/4
D
1
Answer
5/4
Explanation
Solution
The limit can be interpreted as a Riemann sum for the integral ∫01f(x)dx, where f(x)=⌊x2⌋−2⌊x1⌋. The term ⌊2y⌋−2⌊y⌋ is 1 if {y}≥0.5 and 0 otherwise. Thus, f(x)=1 when {x1}≥0.5. This occurs for x∈(m+11,m+0.51] for m≥1. The integral is ∑m=1∞(m+0.51−m+11)=2ln2−1. Comparing with loga−b, we get a=4,b=1. Thus 4a+b=44+1=45.
