Solveeit Logo

Question

Question: If the value of $\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n (\lfloor \frac{2n}{k} \rfloor - 2\lflo...

If the value of limn1nk=1n(2nk2nk)\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^n (\lfloor \frac{2n}{k} \rfloor - 2\lfloor \frac{n}{k}\rfloor) can be expressed as (logab)(\log a - b) where a and b are positive integers, then (a+b)4\frac{(a+b)}{4} is (where [.] denotes greatest integer function)

A

5/4

B

3/2

C

7/4

D

1

Answer

5/4

Explanation

Solution

The limit can be interpreted as a Riemann sum for the integral 01f(x)dx\int_0^1 f(x) dx, where f(x)=2x21xf(x) = \lfloor \frac{2}{x} \rfloor - 2\lfloor \frac{1}{x} \rfloor. The term 2y2y\lfloor 2y \rfloor - 2\lfloor y \rfloor is 11 if {y}0.5\{y\} \ge 0.5 and 00 otherwise. Thus, f(x)=1f(x)=1 when {1x}0.5\{\frac{1}{x}\} \ge 0.5. This occurs for x(1m+1,1m+0.5]x \in (\frac{1}{m+1}, \frac{1}{m+0.5}] for m1m \ge 1. The integral is m=1(1m+0.51m+1)=2ln21\sum_{m=1}^\infty (\frac{1}{m+0.5} - \frac{1}{m+1}) = 2\ln 2 - 1. Comparing with logab\log a - b, we get a=4,b=1a=4, b=1. Thus a+b4=4+14=54\frac{a+b}{4} = \frac{4+1}{4} = \frac{5}{4}.