Solveeit Logo

Question

Question: If the value of $\int_{0}^{1} \frac{dx}{(1+x^2)(3+x^2)} = \frac{(3\sqrt{a}-b)\pi}{12b\sqrt{a}}$ (whe...

If the value of 01dx(1+x2)(3+x2)=(3ab)π12ba\int_{0}^{1} \frac{dx}{(1+x^2)(3+x^2)} = \frac{(3\sqrt{a}-b)\pi}{12b\sqrt{a}} (where a, b are coprime positive integers). Then a2+b2a^2 + b^2 equals to

A

20

B

10

C

13

D

5

Answer

13

Explanation

Solution

The integral is evaluated using partial fractions. Let y=x2y=x^2, then 1(1+y)(3+y)=12(11+y13+y)\frac{1}{(1+y)(3+y)} = \frac{1}{2}\left(\frac{1}{1+y} - \frac{1}{3+y}\right). So the integral becomes 1201(11+x213+x2)dx\frac{1}{2} \int_{0}^{1} \left(\frac{1}{1+x^2} - \frac{1}{3+x^2}\right) dx. This evaluates to 12[arctan(x)13arctan(x3)]01=12(π413π6)=π8π123\frac{1}{2} \left[ \arctan(x) - \frac{1}{\sqrt{3}}\arctan\left(\frac{x}{\sqrt{3}}\right) \right]_{0}^{1} = \frac{1}{2} \left( \frac{\pi}{4} - \frac{1}{\sqrt{3}}\frac{\pi}{6} \right) = \frac{\pi}{8} - \frac{\pi}{12\sqrt{3}}. Rationalizing the second term gives π8π336\frac{\pi}{8} - \frac{\pi\sqrt{3}}{36}. The given form is (3ab)π12ba=3aπ12babπ12ba=π4bπ12a\frac{(3\sqrt{a}-b)\pi}{12b\sqrt{a}} = \frac{3\sqrt{a}\pi}{12b\sqrt{a}} - \frac{b\pi}{12b\sqrt{a}} = \frac{\pi}{4b} - \frac{\pi}{12\sqrt{a}}. Equating the two forms: π8π336=π4bπ12a\frac{\pi}{8} - \frac{\pi\sqrt{3}}{36} = \frac{\pi}{4b} - \frac{\pi}{12\sqrt{a}}. Comparing terms, 18=14b    b=2\frac{1}{8} = \frac{1}{4b} \implies b=2, and 336=112a    123a=36    3a=3    3a=9    a=3\frac{\sqrt{3}}{36} = \frac{1}{12\sqrt{a}} \implies 12\sqrt{3a} = 36 \implies \sqrt{3a} = 3 \implies 3a = 9 \implies a=3. Since a=3a=3 and b=2b=2 are coprime positive integers, a2+b2=32+22=9+4=13a^2 + b^2 = 3^2 + 2^2 = 9+4=13.