Question
Question: If the value of $\int_{0}^{1} \frac{dx}{(1+x^2)(3+x^2)} = \frac{(3\sqrt{a}-b)\pi}{12b\sqrt{a}}$ (whe...
If the value of ∫01(1+x2)(3+x2)dx=12ba(3a−b)π (where a, b are coprime positive integers). Then a2+b2 equals to

A
20
B
10
C
13
D
5
Answer
13
Explanation
Solution
The integral is evaluated using partial fractions. Let y=x2, then (1+y)(3+y)1=21(1+y1−3+y1). So the integral becomes 21∫01(1+x21−3+x21)dx. This evaluates to 21[arctan(x)−31arctan(3x)]01=21(4π−316π)=8π−123π. Rationalizing the second term gives 8π−36π3. The given form is 12ba(3a−b)π=12ba3aπ−12babπ=4bπ−12aπ. Equating the two forms: 8π−36π3=4bπ−12aπ. Comparing terms, 81=4b1⟹b=2, and 363=12a1⟹123a=36⟹3a=3⟹3a=9⟹a=3. Since a=3 and b=2 are coprime positive integers, a2+b2=32+22=9+4=13.
