Solveeit Logo

Question

Question: If the value of \[{{i}^{2}}=-1\], then calculate the value of \[3{{i}^{2}}+{{i}^{3}}-{{i}^{4}}\]. ...

If the value of i2=1{{i}^{2}}=-1, then calculate the value of 3i2+i3i43{{i}^{2}}+{{i}^{3}}-{{i}^{4}}.
(a) 4i-4-i
(b) 2i-2-i
(c) 2+i2+i
(d) 4+i4+i
(e) 6+2i6+2i

Explanation

Solution

To solve this question we will assume variables a, b, c to 3i2,i33{{i}^{2}},{{i}^{3}} & i4-{{i}^{4}} and we will use the identity that i2=1{{i}^{2}}=-1. Finally we will add them up to get the result.

Complete step-by-step solution:
We are given that the value of i2=1{{i}^{2}}=-1, then the value of i3{{i}^{3}}, i4{{i}^{4}} can be calculated separately.
Firstly we will calculate the value of i3{{i}^{3}} and i4{{i}^{4}}, thus proceed to calculate the value of 3i2+i3i43{{i}^{2}}+{{i}^{3}}-{{i}^{4}}.
We have, i2=1{{i}^{2}}=-1.
Then, Let a=3i2,b=i3,c=i4a=3{{i}^{2}},b={{i}^{3}},c=-{{i}^{4}}.
We have to calculate the value of a + b + c,
Because, i2=1{{i}^{2}}=-1.

& \Rightarrow 3{{i}^{2}}=\left( 3 \right)\left( -1 \right) \\\ & \Rightarrow 3{{i}^{2}}=-3 \\\ \end{aligned}$$ Therefore, $a = -3$ ------- (1) Now consider b. $$b={{i}^{3}}$$ We have, $${{i}^{2}}=-1$$. Multiplying ‘i’ both sides of the above equation, $$\Rightarrow {{i}^{3}}=-i$$ $$\Rightarrow b = -i $$ ---------- (2) Now compute, $$c=-{{i}^{4}}$$. We have, $${{i}^{2}}=-1$$. Multiplying, $${{i}^{2}}=-1$$ on both sides we have, $$\begin{aligned} & {{i}^{4}}=\left( -1 \right)\left( -1 \right) \\\ & \Rightarrow {{i}^{4}}=1 \\\ \end{aligned}$$ Now, $$c=-{{i}^{4}}=-1$$. Hence, $c = -1$ –------ (3) Now a + b + c, using (1), (2) & (3) we have, $$a+b+c=-3-i-1=-4-i$$, which is option (a). **Therefore, $$3{{i}^{2}}+{{i}^{3}}-{{i}^{4}}=-4-i$$, option (a) is correct.** **Note:** Another way to solve this question can be directly. Substituting, $${{i}^{2}}=-1$$, $${{i}^{4}}=1$$ & $${{i}^{3}}=-i$$ to get the result, then answer would come as $$3{{i}^{2}}+{{i}^{3}}-{{i}^{4}}=3\left( -1 \right)+\left( -i \right)-1=-4-i$$, option (a).