Solveeit Logo

Question

Question: If the value of \[{{I}_{1}}=\int\limits_{0}^{1}{{{2}^{{{x}^{2}}}}dx}\] and \[{{I}_{2}}=\int\limits_{...

If the value of I1=012x2dx{{I}_{1}}=\int\limits_{0}^{1}{{{2}^{{{x}^{2}}}}dx} and I2=012x3dx{{I}_{2}}=\int\limits_{0}^{1}{{{2}^{{{x}^{3}}}}dx} and I3=122x2dx{{I}_{3}}=\int\limits_{1}^{2}{{{2}^{{{x}^{2}}}}dx} and I4=122x3dx{{I}_{4}}=\int\limits_{1}^{2}{{{2}^{{{x}^{3}}}}dx} then,
(a)I3>I4\left( a \right){{I}_{3}}>{{I}_{4}}
(b)I3=I4\left( b \right){{I}_{3}}={{I}_{4}}
(c)I1>I2\left( c \right){{I}_{1}}>{{I}_{2}}
(d)I2>I1\left( d \right){{I}_{2}}>{{I}_{1}}

Explanation

Solution

To solve this question, we will first consider the integral I1{{I}_{1}} and I2{{I}_{2}} and observe that the limit of the integral is from 0 to 1, i.e. x[0,1)0Completestepbystepanswer:Letusfirstfindtherelationbetween\[I1x\in \left[ 0,1 \right)\Rightarrow 0 **Complete step-by-step answer:** Let us first find the relation between \[{{I}_{1}} and I2.{{I}_{2}}.
I1=012x2dx{{I}_{1}}=\int\limits_{0}^{1}{{{2}^{{{x}^{2}}}}dx}
I2=012x3dx{{I}_{2}}=\int\limits_{0}^{1}{{{2}^{{{x}^{3}}}}dx}
Here, as integral varies from 0 to 1, x varies from 0 to 1.
0x1\Rightarrow 0\le x\le 1
Now, for 0x10\le x\le 1 we have x2>x3.{{x}^{2}}>{{x}^{3}}.
Example if x = 0.5, then x2=(0.5)2=0.25{{x}^{2}}={{\left( 0.5 \right)}^{2}}=0.25 and x3=(0.5)3=0.125{{x}^{3}}={{\left( 0.5 \right)}^{3}}=0.125
So, x2>x3.{{x}^{2}}>{{x}^{3}}.
Now, as x2>x3{{x}^{2}}>{{x}^{3}}
2x2>2x3\Rightarrow {{2}^{{{x}^{2}}}}>{{2}^{{{x}^{3}}}}
Applying the integral on both the sides, we have,
012x2dx=012x3dx\int\limits_{0}^{1}{{{2}^{{{x}^{2}}}}dx}=\int\limits_{0}^{1}{{{2}^{{{x}^{3}}}}dx}
I1>I2\Rightarrow {{I}_{1}}>{{I}_{2}}
So, we have the option (c) is the correct answer.
Hence, the relation is determined between I1{{I}_{1}} and I2.{{I}_{2}}.
Now, consider I3{{I}_{3}} and I4.{{I}_{4}}.
I3=122x2dx{{I}_{3}}=\int\limits_{1}^{2}{{{2}^{{{x}^{2}}}}dx}
I4=122x3dx{{I}_{4}}=\int\limits_{1}^{2}{{{2}^{{{x}^{3}}}}dx}
Now, here integral value is between 1 and 2. So, x varies between 1 and 2.
1x2\Rightarrow 1\le x\le 2
And for this value, x2<x3{{x}^{2}}<{{x}^{3}} as (1.5)2<(1.5)3.{{\left( 1.5 \right)}^{2}}<{{\left( 1.5 \right)}^{3}}.
x2<x3\Rightarrow {{x}^{2}}<{{x}^{3}}
2x2<2x3\Rightarrow {{2}^{{{x}^{2}}}}<{{2}^{{{x}^{3}}}}
Applying integral on both the sides, we get,
122x2dx=122x3dx\Rightarrow \int\limits_{1}^{2}{{{2}^{{{x}^{2}}}}dx}=\int\limits_{1}^{2}{{{2}^{{{x}^{3}}}}dx}
I3<I4\Rightarrow {{I}_{3}}<{{I}_{4}}
Hence, option (a) is wrong.

So, the correct answer is “Option c”.

Note: A point to note here in this question is now, x1<x2.{{x}_{1}}<{{x}_{2}}.
2x1<2x2\Rightarrow {{2}^{{{x}_{1}}}}<{{2}^{{{x}_{2}}}}
Consider the function ex{{e}^{x}} now as e2.57.e\cong 2.57. e and 2 behave similarly. Consider the graph of ex.{{e}^{x}}.

Then we see that for x > 0, if x1>x2,ex1>ex2.{{x}_{1}}>{{x}_{2}},\Rightarrow {{e}^{{{x}_{1}}}}>{{e}^{{{x}_{2}}}}. Now, as e and 2 base behaves the same, we can say,
x1>x2\Rightarrow {{x}_{1}}>{{x}_{2}}
2x1>2x2\Rightarrow {{2}^{{{x}_{1}}}}>{{2}^{{{x}_{2}}}}
Hence, the confusion is cleared.