Question
Question: If the value of $\frac{\cot \theta}{\cot 3\theta}=k$, where $\theta \neq \frac{n\pi}{6}, n \in I$, t...
If the value of cot3θcotθ=k, where θ=6nπ,n∈I, then the value of csc3θcscθ is equal to
A
k−12k
Answer
k−12k
Explanation
Solution
Given cot3θcotθ=k, write it as sinθcos3θcosθsin3θ=k so that sinθsin3θ=kcosθcos3θ. Using triple angle formulas, we write
sinθsin3θ=4cos2θ−1andcosθcos3θ=4cos2θ−3.Set
4cos2θ−1=k(4cos2θ−3),solve for cos2θ and substitute back to find:
sinθsin3θ=k−12k.Since csc3θcscθ=sinθsin3θ, the answer is k−12k.