Solveeit Logo

Question

Question: If the value of $\frac{\cot \theta}{\cot 3\theta}=k$, where $\theta \neq \frac{n\pi}{6}, n \in I$, t...

If the value of cotθcot3θ=k\frac{\cot \theta}{\cot 3\theta}=k, where θnπ6,nI\theta \neq \frac{n\pi}{6}, n \in I, then the value of cscθcsc3θ\frac{\csc \theta}{\csc 3\theta} is equal to

A

2kk1\frac{2k}{k-1}

Answer

2kk1\frac{2k}{k-1}

Explanation

Solution

Given cotθcot3θ=k\frac{\cot\theta}{\cot3\theta}=k, write it as cosθsin3θsinθcos3θ=k\frac{\cos\theta\sin3\theta}{\sin\theta\cos3\theta}=k so that sin3θsinθ=kcos3θcosθ\frac{\sin3\theta}{\sin\theta}= k\,\frac{\cos3\theta}{\cos\theta}. Using triple angle formulas, we write

sin3θsinθ=4cos2θ1andcos3θcosθ=4cos2θ3.\frac{\sin3\theta}{\sin\theta}=4\cos^2\theta-1\quad \text{and}\quad \frac{\cos3\theta}{\cos\theta}=4\cos^2\theta-3.

Set

4cos2θ1=k(4cos2θ3),4\cos^2\theta-1=k(4\cos^2\theta-3),

solve for cos2θ\cos^2\theta and substitute back to find:

sin3θsinθ=2kk1.\frac{\sin3\theta}{\sin\theta}=\frac{2k}{k-1}.

Since cscθcsc3θ=sin3θsinθ\frac{\csc\theta}{\csc3\theta}=\frac{\sin3\theta}{\sin\theta}, the answer is 2kk1\frac{2k}{k-1}.