Solveeit Logo

Question

Question: If the value of $\frac{1}{2}+\frac{1}{3}-\frac{1}{3}(\frac{1}{2^3}+\frac{1}{3^3})+\frac{1}{5}(\frac{...

If the value of 12+1313(123+133)+15(125+135).......\frac{1}{2}+\frac{1}{3}-\frac{1}{3}(\frac{1}{2^3}+\frac{1}{3^3})+\frac{1}{5}(\frac{1}{2^5}+\frac{1}{3^5})-....... \infty is a8\frac{a}{8} (where aRa \in R), then the value of [a][a] is (where denotes greatest integer function)

Answer

6

Explanation

Solution

The given series is S=12+1313(123+133)+15(125+135).......S = \frac{1}{2}+\frac{1}{3}-\frac{1}{3}(\frac{1}{2^3}+\frac{1}{3^3})+\frac{1}{5}(\frac{1}{2^5}+\frac{1}{3^5})-.......

This can be written in summation notation as: S=n=1(1)n+112n1(122n1+132n1)S = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{2n-1} \left(\frac{1}{2^{2n-1}} + \frac{1}{3^{2n-1}}\right)

This can be split into two separate series: S=n=1(1)n+112n1(12)2n1+n=1(1)n+112n1(13)2n1S = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{2n-1} \left(\frac{1}{2}\right)^{2n-1} + \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{2n-1} \left(\frac{1}{3}\right)^{2n-1}

We recognize the Taylor series expansion for arctan(x)\arctan(x): arctan(x)=xx33+x55x77+=n=1(1)n+1x2n12n1\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n-1}}{2n-1}, for x1|x| \le 1.

Using this, the first part of the series is arctan(12)\arctan\left(\frac{1}{2}\right) and the second part is arctan(13)\arctan\left(\frac{1}{3}\right). So, S=arctan(12)+arctan(13)S = \arctan\left(\frac{1}{2}\right) + \arctan\left(\frac{1}{3}\right).

We use the arctan addition formula: arctan(x)+arctan(y)=arctan(x+y1xy)\arctan(x) + \arctan(y) = \arctan\left(\frac{x+y}{1-xy}\right), valid for xy<1xy < 1. Here, x=12x = \frac{1}{2} and y=13y = \frac{1}{3}. Since xy=1213=16<1xy = \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6} < 1, the formula applies.

S=arctan(12+131(12)(13))S = \arctan\left(\frac{\frac{1}{2}+\frac{1}{3}}{1-\left(\frac{1}{2}\right)\left(\frac{1}{3}\right)}\right) S=arctan(3+26116)S = \arctan\left(\frac{\frac{3+2}{6}}{1-\frac{1}{6}}\right) S=arctan(5656)S = \arctan\left(\frac{\frac{5}{6}}{\frac{5}{6}}\right) S=arctan(1)S = \arctan(1)

The principal value of arctan(1)\arctan(1) is π4\frac{\pi}{4}. So, S=π4S = \frac{\pi}{4}.

We are given that S=a8S = \frac{a}{8}. Therefore, π4=a8\frac{\pi}{4} = \frac{a}{8}. Solving for aa: a=8×π4=2πa = 8 \times \frac{\pi}{4} = 2\pi.

We need to find the value of [a][a], which is the greatest integer function of aa. a=2πa = 2\pi. Using the approximate value of π3.14159\pi \approx 3.14159: a2×3.14159=6.28318a \approx 2 \times 3.14159 = 6.28318.

The greatest integer less than or equal to 6.283186.28318 is 66. [a]=[2π]=6[a] = [2\pi] = 6.