Solveeit Logo

Question

Mathematics Question on Trigonometry

If the value of 3cos36+5sin185cos363sin18=a5bc,\frac{3 \cos 36^\circ + 5 \sin 18^\circ}{5 \cos 36^\circ - 3 \sin 18^\circ} = \frac{a\sqrt{5} - b}{c}, where a,b,ca, b, c are natural numbers and gcd(a,c)=1\text{gcd}(a, c) = 1, then a+b+ca + b + c is equal to:

A

50

B

40

C

52

D

54

Answer

52

Explanation

Solution

The required area can be expressed as: Required Area=Area of Circle (from 0 to 2)Area under Parabola (from 0 to 2).\text{Required Area} = \text{Area of Circle (from 0 to 2)} - \text{Area under Parabola (from 0 to 2)}. Required Area=028x2dx022xdx\text{Required Area} = \int_0^2 \sqrt{8 - x^2} \, dx - \int_0^2 \sqrt{2x} \, dx

We calculate the two integrals separately:

1. Area under the circle: 028x2dx=[x28x2+82sin1x8]02.\int_0^2 \sqrt{8 - x^2} \, dx = \left[ \frac{x}{2} \sqrt{8 - x^2} + \frac{8}{2} \sin^{-1} \frac{x}{\sqrt{8}} \right]_0^2.

Substituting the limits: 028x2dx=2284+82sin1222(0+82sin10).\int_0^2 \sqrt{8 - x^2} \, dx = \frac{2}{2} \sqrt{8 - 4} + \frac{8}{2} \sin^{-1} \frac{2}{2\sqrt{2}} - \left( 0 + \frac{8}{2} \sin^{-1} 0 \right). =2+4π4=2+π.= 2 + 4 \cdot \frac{\pi}{4} = 2 + \pi.

2. Area under the parabola: 022xdx=[23(2x)3/2]02.\int_0^2 \sqrt{2x} \, dx = \left[ \frac{2}{3} (2x)^{3/2} \right]_0^2.

Substituting the limits: 022xdx=23(22)0=83.\int_0^2 \sqrt{2x} \, dx = \frac{2}{3} \cdot (2\sqrt{2}) - 0 = \frac{8}{3}.

Thus, the required area is: Required Area=(2+π)83.\text{Required Area} = (2 + \pi) - \frac{8}{3}.

Simplifying: Required Area=π23.\text{Required Area} = \pi - \frac{2}{3}.