Question
Mathematics Question on Binomial theorem
If the value of C0+2⋅C1+3⋅C2+⋯+(n+1)⋅Cn=576 ,then n is equal to
A
7
B
5
C
6
D
9
Answer
7
Explanation
Solution
Given, C0+2C1+3C2+…+(n+1)Cn=576
We know that,
(1+x)n=nC0+nC1x+nC2x2+…+nCnxn
⇒x(1+x)n=nC0x+nC1x2+nC2x3+…+nCnxn+1
On differentiating w.r.t. x, we get
(1+x)n+x⋅n(1+x)n−1
=nC0+2⋅nC1⋅x+3nC2x2+…+(n+1)nCnxn
On putting n=1, we get
2n+n⋅2n−1=nC0+2⋅nC1+3⋅nC1+…+(n+1)nCn
⇒2n−1(n+2)=576 (given)
⇒2n−1(n+2)=26×9=2(7−1)⋅(7+2)
On comparing, we get n=7