Solveeit Logo

Question

Question: If the value of \(\alpha = {e^{i\dfrac{{8\pi }}{{11}}}}\) then the real value of \(\left( {\alpha + ...

If the value of α=ei8π11\alpha = {e^{i\dfrac{{8\pi }}{{11}}}} then the real value of (α+α2+α3+α4+α5)\left( {\alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} + {\alpha ^5}} \right) equal to
(A) 00
(B) 11
(C) 12 - \dfrac{1}{2}
(D) 1 - 1

Explanation

Solution

We have given a complex exponent number and we have to determine the real value of the given expression. To find out the real value of the given expression, first, we separate the real part of each term by using the Euler’s formula eiθ=cosθ+isinθ{e^{i\theta }} = \cos \theta + i\sin \theta .
After that we use the standard result of AP that is
cosA+cos(A+B)+cos(A+2B)+.....+cos(A+(n1)B)=cos(A+(n1)B2)sinnB2sinB2\cos A + \cos \left( {A + B} \right) + \cos \left( {A + 2B} \right) + ..... + \cos \left( {A + \left( {n - 1} \right)B} \right) = \dfrac{{\cos \left( {A + \dfrac{{\left( {n - 1} \right)B}}{2}} \right)\sin \dfrac{{nB}}{2}}}{{\sin \dfrac{B}{2}}}
After separating the real terms substitute the values of the cosine of the angles and evaluate the result.

Complete step-by-step answer:
Step1: Apply Euler’s formula to determine the value of α\alpha
We have given the value of α=ei8π11\alpha = {e^{i\dfrac{{8\pi }}{{11}}}} . We apply Euler’s formula, we get
α=cos8π11+isin8π11\Rightarrow \alpha = \cos \dfrac{{8\pi }}{{11}} + i\sin \dfrac{{8\pi }}{{11}} …..(1)
Step2: Find the value of each term in the given expression
The given expression is (α+α2+α3+α4+α5)\left( {\alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} + {\alpha ^5}} \right)
The value of α2{\alpha ^2} is given as α2=(ei8π11)2{\alpha ^2} = {\left( {{e^{i\dfrac{{8\pi }}{{11}}}}} \right)^2}
Applying the exponent rule, we get α2=ei16π11{\alpha ^2} = {e^{i\dfrac{{16\pi }}{{11}}}}
Applying Euler’s formula, we get α2=cos16π11+isin16π11{\alpha ^2} = \cos \dfrac{{16\pi }}{{11}} + i\sin \dfrac{{16\pi }}{{11}} …..(2)
The value of α2{\alpha ^2} is given as α3=(ei8π11)3{\alpha ^3} = {\left( {{e^{i\dfrac{{8\pi }}{{11}}}}} \right)^3}
Applying the exponent rule, we get α3=ei24π11{\alpha ^3} = {e^{i\dfrac{{24\pi }}{{11}}}}
Applying Euler’s formula, we get α3=cos24π11+isin24π11{\alpha ^3} = \cos \dfrac{{24\pi }}{{11}} + i\sin \dfrac{{24\pi }}{{11}} …..(3)
The value of α4{\alpha ^4} is given as α4=(ei8π11)4{\alpha ^4} = {\left( {{e^{i\dfrac{{8\pi }}{{11}}}}} \right)^4}
Applying the exponent rule, we get α4=ei32π11{\alpha ^4} = {e^{i\dfrac{{32\pi }}{{11}}}}
Applying Euler’s formula, we get α4=cos32π11+isin32π11{\alpha ^4} = \cos \dfrac{{32\pi }}{{11}} + i\sin \dfrac{{32\pi }}{{11}} …..(4)
The value of α5{\alpha ^5} is given as α5=(ei8π11)5{\alpha ^5} = {\left( {{e^{i\dfrac{{8\pi }}{{11}}}}} \right)^5}
Applying the exponent rule, we get α5=ei40π11{\alpha ^5} = {e^{i\dfrac{{40\pi }}{{11}}}}
Applying Euler’s formula, we get α5=cos40π11+isin40π11{\alpha ^5} = \cos \dfrac{{40\pi }}{{11}} + i\sin \dfrac{{40\pi }}{{11}} …..(5)
Step3: Add the real part of each term
Now we add the real part of each term in equation (1) to equation (5), we get
Re(α+α2+α3+α4+α5) cos8π11+cos16π11+cos24π11+cos32π11+cos40π11  \operatorname{Re} \left( {\alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} + {\alpha ^5}} \right) \\\ \Rightarrow \cos \dfrac{{8\pi }}{{11}} + \cos \dfrac{{16\pi }}{{11}} + \cos \dfrac{{24\pi }}{{11}} + \cos \dfrac{{32\pi }}{{11}} + \cos \dfrac{{40\pi }}{{11}} \\\
Step 4: Substitute the values
Now substituting the values of each term, we get
cos8π11+cos16π11+cos24π11+cos32π11+cos40π11 0.6540.142+0.8410.959+0.415 0.50  \Rightarrow \cos \dfrac{{8\pi }}{{11}} + \cos \dfrac{{16\pi }}{{11}} + \cos \dfrac{{24\pi }}{{11}} + \cos \dfrac{{32\pi }}{{11}} + \cos \dfrac{{40\pi }}{{11}} \\\ \Rightarrow - 0.654 - 0.142 + 0.841 - 0.959 + 0.415 \\\ \Rightarrow - 0.50 \\\

So the value of Re(α+α2+α3+α4+α5)=12\operatorname{Re} \left( {\alpha + {\alpha ^2} + {\alpha ^3} + {\alpha ^4} + {\alpha ^5}} \right) = - \dfrac{1}{2}.

Note:
To solve such a type of question, separate the real and imaginary part first and then simplify for the real part.
Commit to memory:
Euler’s Formula: eiθ=cosθ+isinθ{e^{i\theta }} = \cos \theta + i\sin \theta
Power law of exponent (am)n=am×n{\left( {{a^m}} \right)^n} = {a^{m \times n}}