Question
Question: If the value of \(\alpha = {e^{i\dfrac{{8\pi }}{{11}}}}\) then the real value of \(\left( {\alpha + ...
If the value of α=ei118π then the real value of (α+α2+α3+α4+α5) equal to
(A) 0
(B) 1
(C) −21
(D) −1
Solution
We have given a complex exponent number and we have to determine the real value of the given expression. To find out the real value of the given expression, first, we separate the real part of each term by using the Euler’s formula eiθ=cosθ+isinθ .
After that we use the standard result of AP that is
cosA+cos(A+B)+cos(A+2B)+.....+cos(A+(n−1)B)=sin2Bcos(A+2(n−1)B)sin2nB
After separating the real terms substitute the values of the cosine of the angles and evaluate the result.
Complete step-by-step answer:
Step1: Apply Euler’s formula to determine the value of α
We have given the value of α=ei118π . We apply Euler’s formula, we get
⇒α=cos118π+isin118π …..(1)
Step2: Find the value of each term in the given expression
The given expression is (α+α2+α3+α4+α5)
The value of α2 is given as α2=ei118π2
Applying the exponent rule, we get α2=ei1116π
Applying Euler’s formula, we get α2=cos1116π+isin1116π …..(2)
The value of α2 is given as α3=ei118π3
Applying the exponent rule, we get α3=ei1124π
Applying Euler’s formula, we get α3=cos1124π+isin1124π …..(3)
The value of α4 is given as α4=ei118π4
Applying the exponent rule, we get α4=ei1132π
Applying Euler’s formula, we get α4=cos1132π+isin1132π …..(4)
The value of α5 is given as α5=ei118π5
Applying the exponent rule, we get α5=ei1140π
Applying Euler’s formula, we get α5=cos1140π+isin1140π …..(5)
Step3: Add the real part of each term
Now we add the real part of each term in equation (1) to equation (5), we get
Re(α+α2+α3+α4+α5) ⇒cos118π+cos1116π+cos1124π+cos1132π+cos1140π
Step 4: Substitute the values
Now substituting the values of each term, we get
⇒cos118π+cos1116π+cos1124π+cos1132π+cos1140π ⇒−0.654−0.142+0.841−0.959+0.415 ⇒−0.50
So the value of Re(α+α2+α3+α4+α5)=−21.
Note:
To solve such a type of question, separate the real and imaginary part first and then simplify for the real part.
Commit to memory:
Euler’s Formula: eiθ=cosθ+isinθ
Power law of exponent (am)n=am×n