Question
Question: If the value of $(2020)^2 + \frac{(2021)^2}{1!} + \frac{(2022)^2}{2!} + \frac{(2023)^2}{3!} + \dots$...
If the value of (2020)2+1!(2021)2+2!(2022)2+3!(2023)2+… is

4084442e
Solution
The given series is S=(2020)2+1!(2021)2+2!(2022)2+3!(2023)2+…. Let n=2020. The series can be written as: S=∑k=0∞k!(n+k)2 Expanding (n+k)2: (n+k)2=n2+2nk+k2 Substituting this into the summation: S=∑k=0∞k!n2+2nk+k2 Splitting the sum: S=∑k=0∞k!n2+∑k=0∞k!2nk+∑k=0∞k!k2 S=n2∑k=0∞k!1+2n∑k=0∞k!k+∑k=0∞k!k2 We know that ∑k=0∞k!1=e. For the second term: ∑k=0∞k!k=∑k=1∞k(k−1)!k=∑k=1∞(k−1)!1=∑j=0∞j!1=e. For the third term: ∑k=0∞k!k2=∑k=0∞k!k(k−1)+k=∑k=0∞k!k(k−1)+∑k=0∞k!k. ∑k=0∞k!k(k−1)=∑k=2∞k(k−1)(k−2)!k(k−1)=∑k=2∞(k−2)!1=∑j=0∞j!1=e. So, ∑k=0∞k!k2=e+e=2e. Substituting these values back into the expression for S: S=n2(e)+2n(e)+2e=e(n2+2n+2) Given n=2020: S=e((2020)2+2(2020)+2)=e(4080400+4040+2)=e(4084442) Thus, the value of the series is 4084442e.