Question
Question: If the value of \(2\sin {{x}^{o}}-1=0\) and \[{{x}^{o}}\] is an acute angle. If \(\cos {{x}^{o}}\) i...
If the value of 2sinxo−1=0 and xo is an acute angle. If cosxo is m/2, m is?
Solution
The values of trigonometric functions (sinθ and cosθ) at different angles are
θ | 0o | 30o | 45o | 60o | 90o |
---|---|---|---|---|---|
Sinθ | 0 | 21 | 1/2 | 3/2 | 1 |
Cosθ | 1 | 3/2 | 1/2 | 21 | 0 |
Solve the equation 2sinxo−1=0 and find the value of sinxo. After this, compare it with the above given values and find the value of xo.Formula Used: Here we have used the values of sinθ and cosθ at \theta ={{30}^{o}}$$$\sin {{30}^{o}}=1/2$ $\cos {{30}^{o}}=\sqrt{3}/2$ _**Complete step-by-step answer:**_ 2\sin {{x}^{o}}-1=0 $\Rightarrow$ $2\sin {{x}^{o}}=1$ $\Rightarrow$ $\sin {{x}^{o}}=1/2$ (1) From the table given above (in the hint) We know, $\sin {{30}^{o}}=1/2$ From (1) $\Rightarrow$ $\sin {{30}^{o}}=1/2=\sin {{x}^{o}}$ \Rightarrow \sin {{x}^{o}}=\sin {{30}^{o}} $$$$ $\Rightarrow {{x}^{o}}={{30}^{o}}$ Now, $\cos {{x}^{o}}=\sqrt{m}/2$ We know, $\cos {{30}^{o}}=\sqrt{3}/2$ {from table} \cos {{x}^{o}}=$$$\cos {{30}^{o}}=\sqrt{3}/2=\sqrt{m}/2\Rightarrow\sqrt{3}/2=\sqrt{m}/2\Rightarrow\sqrt{m}=\sqrt{3}Squaringbothsides\Rightarrowm=3$
Additional Information
Values of trigonometric functions (sinθ,cosθ and tanθ) at different values of angles (0o,30o,45o,60o and 90o).
θ | 0o | 30o | 45o | 60o | 90o |
---|---|---|---|---|---|
Sinθ | 0 | 1/2 | 1/2 | 3/2 | 1 |
Cosθ | 1 | 3/2 | 1/2 | 1/2 | 0 |
Tanθ | 0 | 1/3 | 1 | 3 | ∞ |
---|
Relation between trigonometric functions
1/sinθ=cosecθ1/cosθ=secθ1/tanθ=cotθ
Note: The knowledge of the values of trigonometric functions at different angles is important for students to solve this question. The knowledge of algebra is also required to solve this question.