Solveeit Logo

Question

Question: If the value of \(2\sin {{x}^{o}}-1=0\) and \[{{x}^{o}}\] is an acute angle. If \(\cos {{x}^{o}}\) i...

If the value of 2sinxo1=02\sin {{x}^{o}}-1=0 and xo{{x}^{o}} is an acute angle. If cosxo\cos {{x}^{o}} is m/2\sqrt{m}/2, m is?

Explanation

Solution

The values of trigonometric functions (sinθ\sin \theta and cosθ\cos \theta ) at different angles are

θ\theta0o{{0}^{o}}30o{{30}^{o}}45o{{45}^{o}}60o{{60}^{o}}90o{{90}^{o}}
Sinθ\theta012\dfrac{1}{2}1/21/\sqrt{2}3/2\sqrt{3}/21
Cosθ\theta13/2\sqrt{3}/21/21/\sqrt{2}12\dfrac{1}{2}0

Solve the equation 2sinxo1=02\sin {{x}^{o}}-1=0 and find the value of sinxo\sin {{x}^{o}}. After this, compare it with the above given values and find the value of xo{{x}^{o}}.Formula Used: Here we have used the values of sinθ\sin \theta and cosθ\cos \theta at \theta ={{30}^{o}}$$$\sin {{30}^{o}}=1/2$ $\cos {{30}^{o}}=\sqrt{3}/2$ _**Complete step-by-step answer:**_ 2\sin {{x}^{o}}-1=0 $\Rightarrow$ $2\sin {{x}^{o}}=1$ $\Rightarrow$ $\sin {{x}^{o}}=1/2$ (1) From the table given above (in the hint) We know, $\sin {{30}^{o}}=1/2$ From (1) $\Rightarrow$ $\sin {{30}^{o}}=1/2=\sin {{x}^{o}}$ \Rightarrow \sin {{x}^{o}}=\sin {{30}^{o}} $$$$ $\Rightarrow {{x}^{o}}={{30}^{o}}$ Now, $\cos {{x}^{o}}=\sqrt{m}/2$ We know, $\cos {{30}^{o}}=\sqrt{3}/2$ {from table} \cos {{x}^{o}}=$$$\cos {{30}^{o}}=\sqrt{3}/2=\sqrt{m}/2 \Rightarrow \sqrt{3}/2=\sqrt{m}/2 \Rightarrow \sqrt{m}=\sqrt{3}Squaringbothsides Squaring both sides \Rightarrow m=3$

Additional Information
Values of trigonometric functions (sinθ,cosθ\sin \theta ,\cos \theta and tanθ\tan \theta ) at different values of angles (0o,30o,45o,60o{{0}^{o}},{{30}^{o}},{{45}^{o}},{{60}^{o}} and 90o{{90}^{o}}).

θ\theta0o{{0}^{o}}30o{{30}^{o}}45o{{45}^{o}}60o{{60}^{o}}90o{{90}^{o}}
Sinθ\theta01/21/\sqrt{2}1/21/\sqrt{2}3/2\sqrt{3}/21
Cosθ\theta13/2\sqrt{3}/21/21/\sqrt{2}1/21/\sqrt{2}0
Tanθ\theta01/3\sqrt{3}13\sqrt{3}\infty

Relation between trigonometric functions
1/sinθ=cosecθ 1/cosθ=secθ 1/tanθ=cotθ \begin{aligned} & 1/\sin \theta =\cos ec\theta \\\ & 1/\cos \theta =\sec \theta \\\ & 1/\tan \theta =\cot \theta \\\ \end{aligned}
Note: The knowledge of the values of trigonometric functions at different angles is important for students to solve this question. The knowledge of algebra is also required to solve this question.