Solveeit Logo

Question

Question: If the value of \((1 + \sqrt {1 + x} \tan y = 1 + \sqrt {1 - x} )\), then \(\sin 4y\) is equal to ...

If the value of (1+1+xtany=1+1x)(1 + \sqrt {1 + x} \tan y = 1 + \sqrt {1 - x} ), then sin4y\sin 4y is equal to
A.4x
B.2x
C.x
D.None of these

Explanation

Solution

Hint: Use basic trigonometric conversions like sinC+sinD=2sin(C+D2)cos(CD2),cosC+cosD=2cos(C+D2)cos(CD2)\sin C + \sin D = 2\sin (\dfrac{{C + D}}{2})\cos (\dfrac{{C - D}}{2}),\cos C + \cos D = 2\cos (\dfrac{{C + D}}{2})\cos (\dfrac{{C - D}}{2}) and tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}. Use this to find the value of sin4y\sin 4y.
tany=1+1x1+1+x\tan y = \dfrac{{1 + \sqrt {1 - x} }}{{1 + \sqrt {1 + x} }}……………..(i)

Complete step-by-step answer:
Let x=cosθx = \cos \theta
\Rightarrow 1+x=1+cosθ1 + x = 1 + \cos \theta
=2cos2(θ2)= 2{\cos ^2}(\dfrac{\theta }{2})
1+x=2cosθ2\Rightarrow \sqrt {1 + x} = \sqrt 2 \cos \dfrac{\theta }{2}
Similarly ,
1x=1cosθ\Rightarrow 1 - x = 1 - \cos \theta
=2sin2θ2= 2{\sin ^2}\dfrac{\theta }{2}
1x=2sinθ2\Rightarrow \sqrt {1 - x} = \sqrt 2 \sin \dfrac{\theta }{2}, Hence substituting the value of 1x\sqrt {1 - x} in equation(i)
We get,
tany=1+1x1+1+x\tan y = \dfrac{{1 + \sqrt {1 - x} }}{{1 + \sqrt {1 + x} }}
=1+2sin(θ2)1+2cosθ2 =2(12+sin(θ2))2(12+cos(θ2))  = \dfrac{{1 + \sqrt 2 \sin (\dfrac{\theta }{2})}}{{1 + \sqrt 2 \cos \dfrac{\theta }{2}}} \\\ = \dfrac{{\sqrt 2 (\dfrac{1}{{\sqrt 2 }} + \sin (\dfrac{\theta }{2}))}}{{\sqrt 2 (\dfrac{1}{{\sqrt 2 }} + \cos (\dfrac{\theta }{2}))}} \\\
As we know that 12\dfrac{1}{{\sqrt 2 }}can be written as π4\dfrac{\pi }{4}.
Hence, tany=sinπ4+sinθ2cosπ4+cosθ2\tan y = \dfrac{{\sin \dfrac{\pi }{4} + \sin \dfrac{\theta }{2}}}{{\cos \dfrac{\pi }{4} + \cos \dfrac{\theta }{2}}}
We know that ,
sinC+sinD=2sin(C+D2)cos(CD2) cosC+cosD=2cos(C+D2)cos(CD2)  \sin C + \sin D = 2\sin (\dfrac{{C + D}}{2})\cos (\dfrac{{C - D}}{2}) \\\ \cos C + \cos D = 2\cos (\dfrac{{C + D}}{2})\cos (\dfrac{{C - D}}{2}) \\\
Hence substituting the value in tany=sinπ4+sinθ2cosπ4+cosθ2\tan y = \dfrac{{\sin \dfrac{\pi }{4} + \sin \dfrac{\theta }{2}}}{{\cos \dfrac{\pi }{4} + \cos \dfrac{\theta }{2}}} , we get
\therefore tany=2sin(π8+θ4)cos(π8θ4)2cos(π8+θ4)cos(π8θ4)\tan y = \dfrac{{2\sin (\dfrac{\pi }{8} + \dfrac{\theta }{4})\cos (\dfrac{\pi }{8} - \dfrac{\theta }{4})}}{{2\cos (\dfrac{\pi }{8} + \dfrac{\theta }{4})\cos (\dfrac{\pi }{8} - \dfrac{\theta }{4})}}
By simplifying we get , tany=sin(π8+θ4)cos(π8+θ4)\tan y = \dfrac{{\sin (\dfrac{\pi }{8} + \dfrac{\theta }{4})}}{{\cos (\dfrac{\pi }{8} + \dfrac{\theta }{4})}} hence we know that tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}
Hence by substituting the value we get ,
\Rightarrow tany=tan(π8+θ4)\tan y = \tan (\dfrac{\pi }{8} + \dfrac{\theta }{4})
y=π8+θ4 4y=π2+θ  \Rightarrow y = \dfrac{\pi }{8} + \dfrac{\theta }{4} \\\ \Rightarrow 4y = \dfrac{\pi }{2} + \theta \\\
Hence according to question we have to find sin4y\sin 4y, so
sin4y=sin(π2+θ)\sin 4y = \sin (\dfrac{\pi }{2} + \theta )
Hence , (π2+θ)(\dfrac{\pi }{2} + \theta ) lies in second quadrant , where sin\sin is positive , hence it is equal to cosθ\cos \theta and initially we have assumed cosθ\cos \theta =x = x.
sin4y=x\therefore \sin 4y = x

Note: It is always advisable to remember such basic conversions while involving trigonometric questions as it helps save a lot of time. Trigonometric identity and sign of all trigonometric functions in all the quadrants is required to solve this problem.