Solveeit Logo

Question

Question: If the unit vector \(\overrightarrow{a}\) makes angle \(\dfrac{\pi }{3}\) with \(\widehat{i}\), \(\d...

If the unit vector a\overrightarrow{a} makes angle π3\dfrac{\pi }{3} with i^\widehat{i}, π4\dfrac{\pi }{4} with j^\widehat{j} and an acute angle θ\theta with k^\widehat{k}, then find the value of θ\theta .

Explanation

Solution

To solve this question, we should know the formula of dot product. If a,b\overrightarrow{a},\overrightarrow{b} are two vectors and the angle between them is θ\theta , the dot product of the vectors a, b is defined as a.b=abcosθ\overrightarrow{a}.\overrightarrow{b}=\left| a \right|\left| b \right|\cos \theta . Let us assume the vector a\overrightarrow{a} as xi^+yj^+zk^x\widehat{i}+y\widehat{j}+z\widehat{k}. We can infer from the question that the angles between the vector a\overrightarrow{a} and i^\widehat{i},j^\widehat{j} are π3\dfrac{\pi }{3},π4\dfrac{\pi }{4} respectively. We can also infer that a=1\left| a \right|=1 as a\overrightarrow{a} is a unit vector. By using the dot product formula with the two vectors i^\widehat{i},j^\widehat{j}, we get the values of x, y. We know that a=1x2+y2+z2=1\left| a \right|=1\Rightarrow \sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}=1. Using this, we get two values of z. By doing the dot product with k^\widehat{k} and applying the condition that the angle θ\theta should be acute, we get unique values of z and θ\theta .

Complete step-by-step solution:
Let us assume the vector a\overrightarrow{a} as xi^+yj^+zk^x\widehat{i}+y\widehat{j}+z\widehat{k}.
Let us consider the dot products of the vector a\overrightarrow{a} with i^\widehat{i},j^\widehat{j}.
The dot product of the vectors a, b is defined as a.b=abcosθ\overrightarrow{a}.\overrightarrow{b}=\left| a \right|\left| b \right|\cos \theta .
We know that the vectors i^,j^,k^\widehat{i},\widehat{j},\widehat{k} are representing unit vectors along x, y, z axis respectively.
i^.i^=iicosθ\widehat{i}.\widehat{i}=\left| i \right|\left| i \right|\cos \theta
As i^\widehat{i} is a unit vector i=1\left| i \right|=1 and the angle betweeni^\widehat{i} and i^\widehat{i} is θ=0\theta ={{0}^{\circ }}
i^.i^=1.1.cos0=1\widehat{i}.\widehat{i}=1.1.\cos 0=1
Similarly,
j^.j^=1 k^.k^=1 \begin{aligned} & \widehat{j}.\widehat{j}=1 \\\ & \widehat{k}.\widehat{k}=1 \\\ \end{aligned}
i^.j^=ijcosθ\widehat{i}.\widehat{j}=\left| i \right|\left| j \right|\cos \theta
As i^\widehat{i}, j^\widehat{j} are unit vectors i=1,j=1\left| i \right|=1,\left| j \right|=1 and the angle betweeni^\widehat{i} and j^\widehat{j} is θ=90\theta ={{90}^{\circ }}
i^.j^=1.1cos90=0\widehat{i}.\widehat{j}=1.1\cos 90=0
Similarly, dot product of any two vectors of i^,j^,k^\widehat{i},\widehat{j},\widehat{k} is zero and dot product of the same unit vectors is 1.

Let us consider a . i^\overrightarrow{a}\text{ }.\text{ }\widehat{i},
a.i^=aicosπ3\overrightarrow{a}.\widehat{i}=\left| a \right|\left| i \right|\cos \dfrac{\pi }{3}
We know that a=1x2+y2+z2=1\left| a \right|=1\Rightarrow \sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}=1, i=1\left| i \right|=1
Using them, we get
(xi^+yj^+zk^). i^=12 xi^.i^+yj^.i^+zk^.i^=12 x=12 \begin{aligned} & \left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right).\text{ }\widehat{i}=\dfrac{1}{2} \\\ & x\widehat{i}.\widehat{i}+y\widehat{j}.\widehat{i}+z\widehat{k}.\widehat{i}=\dfrac{1}{2} \\\ & x=\dfrac{1}{2} \\\ \end{aligned}
Let us consider a . j^\overrightarrow{a}\text{ }.\text{ }\widehat{j},
a.j^=ajcosπ4\overrightarrow{a}.\widehat{j}=\left| a \right|\left| j \right|\cos \dfrac{\pi }{4}
We know that a=1x2+y2+z2=1\left| a \right|=1\Rightarrow \sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}=1, j=1\left| j \right|=1
Using them, we get
(xi^+yj^+zk^). j^=12 y=12 \begin{aligned} & \left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right).\text{ }\widehat{j}=\dfrac{1}{\sqrt{2}} \\\ & y=\dfrac{1}{\sqrt{2}} \\\ \end{aligned}
Let us consider a . k^\overrightarrow{a}\text{ }.\text{ }\widehat{k},
Let us assume the required angle be θ\theta .
a.k^=akcosθ\overrightarrow{a}.\widehat{k}=\left| a \right|\left| k \right|\cos \theta
We know that a=1x2+y2+z2=1\left| a \right|=1\Rightarrow \sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}=1, k=1\left| k \right|=1
Using them, we get
(xi^+yj^+zk^). k^=cosθ z=cosθ \begin{aligned} & \left( x\widehat{i}+y\widehat{j}+z\widehat{k} \right).\text{ }\widehat{k}=\cos \theta \\\ & z=\cos \theta \\\ \end{aligned}
We know that x2+y2+z2=1\sqrt{{{x}^{2}}+{{y}^{2}}+{{z}^{2}}}=1. Substituting the values of x and y, we get
(12)2+(12)2+z2=1 14+12+z2=1 z2+34=1 z2=14 z=±12 \begin{aligned} & \sqrt{{{\left( \dfrac{1}{2} \right)}^{2}}+{{\left( \dfrac{1}{\sqrt{2}} \right)}^{2}}+{{z}^{2}}}=1 \\\ & \sqrt{\dfrac{1}{4}+\dfrac{1}{2}+{{z}^{2}}}=1 \\\ & {{z}^{2}}+\dfrac{3}{4}=1 \\\ & {{z}^{2}}=\dfrac{1}{4} \\\ & z=\pm \dfrac{1}{2} \\\ \end{aligned}
But we know that z=cosθz=\cos \theta and θ\theta is acute. So,
cosθ>0\cos \theta >0
So, we get
z=cosθ=12 θ=π3 \begin{aligned} & z=\cos \theta =\dfrac{1}{2} \\\ & \theta =\dfrac{\pi }{3} \\\ \end{aligned}
\therefore The angle between a\overrightarrow{a} and k^\widehat{k} is π3\dfrac{\pi }{3}

Note: There is a property in vectors that if a vector a\overrightarrow{a} makes angles θ1,θ2,θ3{{\theta }_{1}},{{\theta }_{2}},{{\theta }_{3}} with i^^,j^,k^\widehat{\hat{i}},\widehat{j},\widehat{k} respectively, then cos2θ1+cos2θ2+cos2θ3=1{{\cos }^{2}}{{\theta }_{1}}+{{\cos }^{2}}{{\theta }_{2}}+{{\cos }^{2}}{{\theta }_{3}}=1. Using this relation, we can write that cos2π3+cos2π4+cos2θ=1 cos2θ=11214 cos2θ=14 cosθ=±12 \begin{aligned} & {{\cos }^{2}}\dfrac{\pi }{3}+{{\cos }^{2}}\dfrac{\pi }{4}+{{\cos }^{2}}\theta =1 \\\ & {{\cos }^{2}}\theta =1-\dfrac{1}{2}-\dfrac{1}{4} \\\ & {{\cos }^{2}}\theta =\dfrac{1}{4} \\\ & \cos \theta =\pm \dfrac{1}{2} \\\ \end{aligned}
As θ\theta is acute angle, we can write that
cosθ=12 θ=π3 \begin{aligned} & \cos \theta =\dfrac{1}{2} \\\ & \theta =\dfrac{\pi }{3} \\\ \end{aligned}