Solveeit Logo

Question

Question: If the unit of length be doubled then the numerical value of the universal gravitation constant G wi...

If the unit of length be doubled then the numerical value of the universal gravitation constant G will become (with respect to present value)

A

Double

B

Half

C

8 times

D

1/8 times

Answer

1/8 times

Explanation

Solution

The universal gravitation constant GG has dimensions [G]=[M1L3T2][G] = [M^{-1} L^3 T^{-2}]. Let the original units of mass, length, and time be uM,uL,uTu_M, u_L, u_T respectively. Let the numerical value of GG in this system be NN. So, G=N uM1uL3uT2G = N \ u_M^{-1} u_L^3 u_T^{-2}.

If the unit of length is doubled, the new unit of length becomes uL=2uLu'_L = 2 u_L. The units of mass and time remain unchanged: uM=uMu'_M = u_M and uT=uTu'_T = u_T. Let the new numerical value of GG be NN'. Then, G=N uM1(uL)3uT2G = N' \ u'_M{}^{-1} (u'_L)^3 u'_T{}^{-2}. Substituting the new units: G=N uM1(2uL)3uT2G = N' \ u_M^{-1} (2 u_L)^3 u_T^{-2} G=N uM1(8uL3)uT2G = N' \ u_M^{-1} (8 u_L^3) u_T^{-2} G=8N uM1uL3uT2G = 8 N' \ u_M^{-1} u_L^3 u_T^{-2}.

Equating the two expressions for GG: N uM1uL3uT2=8N uM1uL3uT2N \ u_M^{-1} u_L^3 u_T^{-2} = 8 N' \ u_M^{-1} u_L^3 u_T^{-2} N=8NN = 8 N' N=N8N' = \frac{N}{8}.

Thus, the numerical value of GG becomes 18\frac{1}{8} times its present value.