Solveeit Logo

Question

Chemistry Question on Uncertainty in Measurement

If the uncertainty in velocity and position of a minute particle in space are, 2.4×10262.4 × 10^{–26} (ms1)(m s^{–1)} and 107(m)10^{–7} (m), respectively. The mass of the particle in g is _____ . (Nearest integer)
(Given : h=6.626×1034Jsh = 6.626 × 10^{–34} Js)

Answer

Δv=2.4×1026 ms1Δv = 2.4 \times 10-26 \ ms^{-1}
Δx=107mΔx = 10^{-7} m
By uncertainty principle,
mh4π(Δx)(Δv)∴ m ≥ \frac {h}{4\pi(Δx)(Δv)}

m6.626×10344×3.14×(107)(2.4)×1026m≥ \frac {6.626 \times 10^{-34}}{4\times 3.14 \times (10^{-7})(2.4)\times 10^{-26}}

m6.626×1014×2.4×3.14m≥ \frac {6.626 \times 10^{-1}}{4 \times 2.4\times3.14}

m0.02198 kgm≥ 0.02198\ kg
m21.98 gm≥ 21.98\ g

So, the mass of the particle 22 g≃ 22\ g