Solveeit Logo

Question

Question: If the uncertainty in the velocity of a moving electron is found to be two times the uncertainty in ...

If the uncertainty in the velocity of a moving electron is found to be two times the uncertainty in its position, the maximum uncertainty in its momentum will be:

A

m\sqrt{m\hbar}

B

2m\frac{\hbar}{2m}

C

mm\hbar

D

m\frac{m}{\hbar}

Answer

m\sqrt{m\hbar}

Explanation

Solution

Heisenberg's Uncertainty Principle: ΔxΔp2\Delta x \cdot \Delta p \ge \frac{\hbar}{2}. Given Δv=2Δx\Delta v = 2 \Delta x and Δp=mΔv\Delta p = m \Delta v. Substituting Δv=Δpm\Delta v = \frac{\Delta p}{m} into the given condition: Δpm=2Δx    Δx=Δp2m\frac{\Delta p}{m} = 2 \Delta x \implies \Delta x = \frac{\Delta p}{2m}. Substituting Δx\Delta x into the uncertainty principle (assuming equality): Δp2mΔp=2    (Δp)22m=2    (Δp)2=m    Δp=m\frac{\Delta p}{2m} \cdot \Delta p = \frac{\hbar}{2} \implies \frac{(\Delta p)^2}{2m} = \frac{\hbar}{2} \implies (\Delta p)^2 = m\hbar \implies \Delta p = \sqrt{m\hbar}.