Solveeit Logo

Question

Question: If the two tangents drawn on hyperbola \(\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}}\) = 1 in such a w...

If the two tangents drawn on hyperbola x2a2y2b2\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} = 1 in such a way that the product of their gradients is c2, then they intersects on the curve

A

y2 + b2 = c2 (x2 – a2)

B

y2 + b2 = c2 (x2 + a2)

C

ax2 + by2 = c2

D

None of these

Answer

y2 + b2 = c2 (x2 – a2)

Explanation

Solution

Let (h,k) be the point of intersection. By SS1 = T2,

(x2a2y2b21)(h2a2k2b21)=[hxa2kyb21]2\left( \frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}} - 1 \right)\left( \frac{h^{2}}{a^{2}} - \frac{k^{2}}{b^{2}} - 1 \right) = \left\lbrack \frac{hx}{a^{2}} - \frac{ky}{b^{2}} - 1 \right\rbrack^{2}

⇒ x2

[h2a4k2a2b21a2h2a4]y2[h2a2b2k2b41b2+k2b4]\left\lbrack \frac{h^{2}}{a^{4}} - \frac{k^{2}}{a^{2}b^{2}} - \frac{1}{a^{2}} - \frac{h^{2}}{a^{4}} \right\rbrack - y^{2}\left\lbrack \frac{h^{2}}{a^{2}b^{2}} - \frac{k^{2}}{b^{4}} - \frac{1}{b^{2}} + \frac{k^{2}}{b^{4}} \right\rbrack+ ..... = 0

We know that m1 m2 = Coefficientofx2Coefficientofy2\frac{Coefficientofx^{2}}{Coefficientofy^{2}}

⇒ m1m2 = k1a2b2+1a2h2a2b21b2\frac{\frac{k^{1}}{a^{2}b^{2}} + \frac{1}{a^{2}}}{\frac{h^{2}}{a^{2}b^{2}} - \frac{1}{b^{2}}} = c2

(k2+b2h2a2)\left( \frac{k^{2} + b^{2}}{h^{2} - a^{2}} \right)= c2 or (y2 + b2 = c2 (x2 – a2)