Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

If the two lines
l1:(x2)3=(y+1)2,z=2l1:\frac{(x−2)}{3}=\frac{(y+1)}{−2},z=2
and
l2:(x1)1=(2y+3)α=(z+5)2l2:\frac{(x−1)}{1}=\frac{(2y+3)}{α}=\frac{(z+5)}{2}
are perpendicular, then an angle between the lines l2 and
l3:(1x)3=(2y1)4=z4l3:\frac{(1−x)}{3}=\frac{(2y−1)}{−4}=\frac{z}{4}
is

A

cos1(294)cos^{-1}(\frac{29}{4})

B

sec1(294)sec^{-1}(\frac{29}{4})

C

cos1(229)cos^{-1}(\frac{2}{29})

D

cos1(229)cos^{-1}(\frac{2}{\sqrt29})

Answer

sec1(294)sec^{-1}(\frac{29}{4})

Explanation

Solution

The correct answer is (B) : sec1(294)sec^{-1}(\frac{29}{4})
∵ l1 and l2 are perpendicular, so
3×1+(2)(α2)+0×2=03×1+(−2)(\frac{α}{2})+0×2=0
⇒ α = 3
Now angle between l2 and l3,
cosθ=1(3)+α2(2)+2(4)(1+α24+49+4+16cos⁡θ=\frac{1(−3)+\frac{α}{2}(−2)+2(4)}{(\sqrt{1+\frac{α^2}{4}}+4\sqrt{9+4+16}}
cosθ=2292⇒cos⁡θ=\frac{\frac{2}{29}}{2}
θ=cos1(429)=sec1(294)⇒θ=cos^{−1}⁡(\frac{4}{29})=sec−1⁡(\frac{29}{4})